11,156 research outputs found

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Astrophysical Constraints on Large Extra Dimensions

    Get PDF
    In the Kaluza-Klein (KK) scenario with n large extra dimensions where gravity propagates in the 4+n dimensional bulk of spacetime while gauge and matter fields are confined to a four dimensional subspace, the light graviton KK modes can be produced in the Sun, red giants and supernovae. We study the energy-loss rates through photon-photon annihilation, electron-positron annihilation, gravi-Compton-Primakoff scattering, gravi-bremsstrahlung and nucleon-nucleon bremsstrahlung, and derive lower limits to the string scale M_S. The most stringent lower limit obtained from SN1987A leads to MS>30130M_S> 30 - 130 TeV (2.1-9.2 TeV) for the case of two (three) large extra dimensions.Comment: 12 pages, 4 figures, 2 tables; minor corrections, references adde

    The BPS Domain Wall Solutions in Self-Dual Chern-Simons-Higgs Systems

    Get PDF
    We study domain wall solitons in the relativistic self-dual Chern-Simons Higgs systems by the dimensional reduction method to two dimensional spacetime. The Bogomolny bound on the energy is given by two conserved quantities in a similar way that the energy bound for BPS dyons is set in some Yang-Mills-Higgs systems in four dimensions. We find the explicit soliton configurations which saturate the energy bound and their nonrelativistic counter parts. We also discuss the underlying N=2 supersymmetry.Comment: 16 pages, LaTeX, no figure, a minor change in acknowledgment

    Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility

    Full text link
    We analytically address disease outbreaks in large, random networks with heterogeneous infectivity and susceptibility. The transmissibility TuvT_{uv} (the probability that infection of uu causes infection of vv) depends on the infectivity of uu and the susceptibility of vv. Initially a single node is infected, following which a large-scale epidemic may or may not occur. We use a generating function approach to study how heterogeneity affects the probability that an epidemic occurs and, if one occurs, its attack rate (the fraction infected). For fixed average transmissibility, we find upper and lower bounds on these. An epidemic is most likely if infectivity is homogeneous and least likely if the variance of infectivity is maximized. Similarly, the attack rate is largest if susceptibility is homogeneous and smallest if the variance is maximized. We further show that heterogeneity in infectious period is important, contrary to assumptions of previous studies. We confirm our theoretical predictions by simulation. Our results have implications for control strategy design and identification of populations at higher risk from an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter

    Self-dual Maxwell Chern-Simons Solitons In 1+1 Dimensions

    Get PDF
    We study the domain wall soliton solutions in the relativistic self-dual Maxwell Chern-Simons model in 1+1 dimensions obtained by the dimensional reduction of the 2+1 model. Both topological and nontopological self-dual solutions are found in this case. A la BPS dyons here the Bogomol'ny bound on the energy is expressed in terms of two conserved quantities. We discuss the underlying supersymmetry. Nonrelativistic limit of this model is also considered and static, nonrelativistic self-dual soliton solutions are obtained.Comment: 18 pages RevTex, 2 figures included, to appear in Phys. Rev.
    corecore