102,653 research outputs found

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Quantum decoherence of excitons in a leaky cavity with quasimode

    Get PDF
    For the excitons in the quantum well placed within a leaky cavity, the quantum decoherence of a mesoscopically superposed states is investigated based on the factorization theory for quantum dissipation. It is found that the coherence of the exciton superposition states will decrease in an oscillating form when the cavity field interacting with the exciton is of the form of quasimode. The effect of the thermal cavity fields on the quantum decoherence of the superposition states of the exciton is studied and it is observed that the higher the temperature of the environment is, the shorter the decoherence characteristic time is.Comment: 1 figure, 7 page
    • …
    corecore