102,653 research outputs found
High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase
In this paper the evolution of a quantum system drived by a non-Hermitian
Hamiltonian depending on slowly-changing parameters is studied by building an
universal high-order adiabatic approximation(HOAA) method with Berry's phase
,which is valid for either the Hermitian or the non-Hermitian cases. This
method can be regarded as a non-trivial generalization of the HOAA method for
closed quantum system presented by this author before. In a general situation,
the probabilities of adiabatic decay and non-adiabatic transitions are
explicitly obtained for the evolution of the non-Hermitian quantum system. It
is also shown that the non-Hermitian analog of the Berry's phase factor for the
non-Hermitian case just enjoys the holonomy structure of the dual linear bundle
over the parameter manifold. The non-Hermitian evolution of the generalized
forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page
Quantum decoherence of excitons in a leaky cavity with quasimode
For the excitons in the quantum well placed within a leaky cavity, the
quantum decoherence of a mesoscopically superposed states is investigated based
on the factorization theory for quantum dissipation. It is found that the
coherence of the exciton superposition states will decrease in an oscillating
form when the cavity field interacting with the exciton is of the form of
quasimode. The effect of the thermal cavity fields on the quantum decoherence
of the superposition states of the exciton is studied and it is observed that
the higher the temperature of the environment is, the shorter the decoherence
characteristic time is.Comment: 1 figure, 7 page
- …