734 research outputs found
Hadronic Parity Violation and Inelastic Electron-Deuteron Scattering
We compute contributions to the parity-violating (PV) inelastic
electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic
PV effects can be relatively important in PV threshold electro- disintegration,
we find that they are highly suppressed at quasielastic kinematics. The
interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by
hadronic PV.Comment: 27 pages, 13 figures, uses REVTeX and BibTe
Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors
The flux-noise spectra around the Kosterlitz-Thouless transition are obtained
from simulations of the two-dimensional resistively shunted junction model. In
particular the dependence on the distance between the pick-up coil and the
sample is investigated. The typical experimental situation corresponds to the
large- limit and a simple relation valid in this limit between the complex
impedance and the noise spectra is clarified. Features, which distinguish
between the large- and small- limit, are identified and the possibility of
observing these features in experiments is discussed.Comment: 12 pages including 8 figures, submitted to Phys. Rev.
Temperature-dependent magnetization in diluted magnetic semiconductors
We calculate magnetization in magnetically doped semiconductors assuming a
local exchange model of carrier-mediated ferromagnetic mechanism and using a
number of complementary theoretical approaches. In general, we find that the
results of our mean-field calculations, particularly the dynamical mean field
theory results, give excellent qualitative agreement with the experimentally
observed magnetization in systems with itinerant charge carriers, such as
Ga_{1-x}Mn_xAs with 0.03 < x < 0.07, whereas our percolation-theory-based
calculations agree well with the existing data in strongly insulating
materials, such as Ge_{1-x}Mn_x. We comment on the issue of non-mean-field like
magnetization curves and on the observed incomplete saturation magnetization
values in diluted magnetic semiconductors from our theoretical perspective. In
agreement with experimental observations, we find the carrier density to be the
crucial parameter determining the magnetization behavior. Our calculated
dependence of magnetization on external magnetic field is also in excellent
agreement with the existing experimental data.Comment: 17 pages, 15 figure
The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state
The effect of substrate bias and surface gate voltage on the low temperature
resistivity of a Si-MOSFET is studied for electron concentrations where the
resistivity increases with increasing temperature. This technique offers two
degrees of freedom for controlling the electron concentration and the device
mobility, thereby providing a means to evaluate the relative importance of
electron-electron interactions and disorder in this so-called ``metallic''
regime. For temperatures well below the Fermi temperature, the data obey a
scaling law where the disorder parameter (), and not the
concentration, appears explicitly. This suggests that interactions, although
present, do not alter the Fermi-liquid properties of the system fundamentally.
Furthermore, this experimental observation is reproduced in results of
calculations based on temperature-dependent screening, in the context of
Drude-Boltzmann theory.Comment: 5 pages, 6 figure
Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States
Dynamical and transport properties of a simple single-band spin-fermion
lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here
discussed using Monte Carlo simulations. This effort is a continuation of
previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static
properties of the model were studied. The present results support the view that
the relevant regime of J/t (standard notation) is that of intermediate
coupling, where carriers are only partially trapped near Mn spins, and locally
ordered regions (clusters) are present above the Curie temperature T_C. This
conclusion is based on the calculation of the resistivity vs. temperature, that
shows a soft metal to insulator transition near T_C, as well on the analysis of
the density-of-states and optical conductivity. In addition, in the clustered
regime a large magnetoresistance is observed in simulations. Formal analogies
between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and
tex
Variational Mean Field approach to the Double Exchange Model
It has been recently shown that the double exchange Hamiltonian, with weak
antiferromagnetic interactions, has a richer variety of first and second order
transitions than previously anticipated, and that such transitions are
consistent with the magnetic properties of manganites. Here we present a
thorough discussion of the variational Mean Field approach that leads to the
these results. We also show that the effect of the Berry phase turns out to be
crucial to produce first order Paramagnetic-Ferromagnetic transitions near half
filling with transition temperatures compatible with the experimental
situation. The computation relies on two crucial facts: the use of a Mean Field
ansatz that retains the complexity of a system of electrons with off-diagonal
disorder, not fully taken into account by the Mean Field techniques, and the
small but significant antiferromagnetic superexchange interaction between the
localized spins.Comment: 13 pages, 11 postscript figures, revte
Protein Sequences Classification Using Modular RBF Neural Networks
A protein super-family consists of proteins which share amino acid sequence homology and which may therefore be functionally and structurally related. One of the benefits from this category grouping is that some hint of function
may be deduced for individual members from information on other members of the family. Traditionally, two protein sequences are classified into the same class if they have high homology in terms of feature patterns extracted through sequence alignment algorithms. These algorithms compare an unseen protein sequence with all the identified protein sequences and returned the higher scored protein sequences. As the sizes of the protein sequence databases are very large, it is a very time consuming job to perform exhaustive comparison of existing protein sequence. Therefore, there is a need to build an improved classification system for effectively identifying protein sequences. This paper presents a modular neural classifier for protein sequences with improved classification criteria. The intelligent classification techniques described in this paper aims to enhance the performance of single neural classifiers based on a centralized information structure in terms of recognition rate, generalization and reliability. The architecture of the proposed model is a modular RBF neural network with a
compensational combination at the transition output layer. The connection weights between the final output layer and the transition output layer are optimized by delta rule, which serve as an integrator of the local neural classifiers. To enhance the classification reliability, we present two heuristic rules to apply to decision-making. Two sets of protein sequences with ten classes of superfamilies downloaded from a public domain database, Protein Information Resources (PIR), are used in our simulation study. Experimental results with performance
comparisons are carried out between single neural classifiers and the proposed modular neural classifier
Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability
This paper concerns the explicit construction of extremal Kaehler metrics on
total spaces of projective bundles, which have been studied in many places. We
present a unified approach, motivated by the theory of hamiltonian 2-forms (as
introduced and studied in previous papers in the series) but this paper is
largely independent of that theory.
We obtain a characterization, on a large family of projective bundles, of
those `admissible' Kaehler classes (i.e., the ones compatible with the bundle
structure in a way we make precise) which contain an extremal Kaehler metric.
In many cases, such as on geometrically ruled surfaces, every Kaehler class is
admissible. In particular, our results complete the classification of extremal
Kaehler metrics on geometrically ruled surfaces, answering several
long-standing questions.
We also find that our characterization agrees with a notion of K-stability
for admissible Kaehler classes. Our examples and nonexistence results therefore
provide a fertile testing ground for the rapidly developing theory of stability
for projective varieties, and we discuss some of the ramifications. In
particular we obtain examples of projective varieties which are destabilized by
a non-algebraic degeneration.Comment: 40 pages, sequel to math.DG/0401320 and math.DG/0202280, but largely
self-contained; partially replaces and extends math.DG/050151
Modelling of strain effects in manganite films
Thickness dependence and strain effects in films of
perovskites are analyzed in the colossal magnetoresistance regime. The
calculations are based on a generalization of a variational approach previously
proposed for the study of manganite bulk. It is found that a reduction in the
thickness of the film causes a decrease of critical temperature and
magnetization, and an increase of resistivity at low temperatures. The strain
is introduced through the modifications of in-plane and out-of-plane electron
hopping amplitudes due to substrate-induced distortions of the film unit cell.
The strain effects on the transition temperature and transport properties are
in good agreement with experimental data only if the dependence of the hopping
matrix elements on the bond angle is properly taken into account.
Finally variations of the electron-phonon coupling linked to the presence of
strain turn out important in influencing the balance of coexisting phases in
the filmComment: 7 figures. To be published on Physical Review
Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab
This white paper summarizes the scientific opportunities for utilization of
the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and
associated experimental equipment at Jefferson Lab. It is based on the 52
proposals recommended for approval by the Jefferson Lab Program Advisory
Committee.The upgraded facility will enable a new experimental program with
substantial discovery potential to address important topics in nuclear,
hadronic, and electroweak physics.Comment: 64 page
- …