102,343 research outputs found
Recommended from our members
Studies on Temperature and Strain Sensitivities of a Few-mode Critical Wavelength Fiber Optic Sensor
This paper studied the relationship between the temperature/strain wavelength sensitivity of a fiber optic in-line Mach-Zehnder Interferometer (MZI) sensor and the wavelength separation of the measured wavelength to the critical wavelength (CWL) in a CWL-existed interference spectrum formed by interference between LP01 and LP02 modes. The in-line MZI fiber optic sensor has been constructed by splicing a section of specially designed few-mode fiber (FMF), which support LP01 and LP02 modes propagating in the fiber, between two pieces of single mode fiber. The propagation constant difference, Δβ, between the LP01 and LP02 modes, changes non-monotonously with wavelength and reaches a maximum at the CWL. As a result, in sensor operation, peaks on the different sides of the CWL then shift in opposite directions, and the associated temperature/strain sensitivities increase significantly when the measured wavelength points become close to the CWL, from both sides of the CWL. A theoretical analysis carried out has predicted that with this specified FMF sensor approach, the temperature/strain wavelength sensitivities are governed by the wavelength difference between the measured wavelength and the CWL. This conclusion was seen to agree well with the experimental results obtained. Combining the wavelength shifts of the peaks and the CWL in the transmission spectrum of the SFS structure, this study has shown that this approach forms the basis of effective designs of high sensitivity sensors for multi-parameter detection and offering a large measurement range to satisfy the requirements needed for better industrial measurements
Shubnikov-de Haas oscillations of a single layer graphene under dc current bias
Shubnikov-de Haas (SdH) oscillations under a dc current bias are
experimentally studied on a Hall bar sample of single layer graphene. In dc
resistance, the bias current shows the common damping effect on the SdH
oscillations and the effect can be well accounted for by an elevated electron
temperature that is found to be linearly dependent on the current bias. In
differential resistance, a novel phase inversion of the SdH oscillations has
been observed with increasing dc bias, namely we observe the oscillation maxima
develop into minima and vice versa. Moreover, it is found that the onset
biasing current, at which a SdH extremum is about to invert, is linearly
dependent on the magnetic field of the SdH extrema. These observations are
quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde
Strangeness production in heavy ion collisions at SPS and RHIC within two-source statistical model
The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au
collisions at SPS and RHIC energies, respectively, are analysed within a
two-source statistical model of an ideal hadron gas. These two sources
represent the expanding system of colliding heavy ions, where the hot central
fireball is embedded in a larger but cooler fireball. The volume of the central
source increases with rising bombarding energy. Results of the two-source model
fit to RHIC experimental data at midrapidity coincide with the results of the
one-source thermal model fit, indicating the formation of an extended fireball,
which is three times larger than the corresponding core at SPS.Comment: Talk at "Strange Quarks in Matter" Conference (Strangeness'2001),
September 2001, Frankfurt a.M., German
Determination of activation volumes of reversal in perpendicular media
We discuss a method for the determination of activation volumes of reversal in perpendicular media. This method does not require correction for the self-demagnetizing field normally associated with these media. This is achieved by performing time dependence measurements at a constant level of magnetization. From the difference in time taken for the magnetization to decay to a fixed value at two fields-separated by a small increment DeltaH, the activation volume can be determined. We report data for both CoCrPt alloy films and a multilayer film, typical of those materials under consideration for use as perpendicular media. We find activation volumes that are consistent with the hysteresis curves of the materials. The activation volume scales qualitatively with the exchange coupling. The alloy films have significantly lower activation volumes, implying that they would be capable of supporting a higher data density
Security improvement of using modified coherent state for quantum cryptography
Weak coherent states as a photon source for quantum cryptography have limit
in secure data rate and transmission distance because of the presence of
multi-photon events and loss in transmission line. Two-photon events in a
coherent state can be taken out by a two-photon interference scheme. We
investigate the security issue of utilizing this modified coherent state in
quantum cryptography. A 4 dB improvement in secure data rate or a nearly
two-fold increase in transmission distance over the coherent state are found.
With a recently proposed and improved encoding strategy, further improvement is
possible.Comment: 5 pages, 2 figures, to appear in Physical Review
Realization of generalized quantum searching using nuclear magnetic resonance
According to the theoretical results, the quantum searching algorithm can be
generalized by replacing the Walsh-Hadamard(W-H) transform by almost any
quantum mechanical operation. We have implemented the generalized algorithm
using nuclear magnetic resonance techniques with a solution of chloroform
molecules. Experimental results show the good agreement between theory and
experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar
200
- …