169,824 research outputs found

    Vortex dynamics

    Get PDF
    Vortex flows of interest to aerodynamicists cover a wide range of scales from a fraction of an inch in boundary layer flows to many feet in wake flows. In many applications these flows are poorly understood and, due to their complexity, present a challenge both analytically and experimentally. Four topics representing the spectrum of experimental and analytical vortex research are presented

    Schiff Theorem and the Electric Dipole Moments of Hydrogen-Like Atoms

    Get PDF
    The Schiff theorem is revisited in this work and the residual PP- and TT-odd electron--nucleus interaction, after the shielding takes effect, is completely specified. An application is made to the electric dipole moments of hydrogen-like atoms, whose qualitative features and systematics have important implication for realistic paramagnetic atoms.Comment: 3 pages. Contribution to PANIC05, Particles and Nuclei International Conference, Santa Fe, New Mexico, Oct. 24-28, 200

    Segregation of Polymers in Confined Spaces

    Full text link
    We investigate the motion of two overlapping polymers with self-avoidance confined in a narrow 2d box. A statistical model is constructed using blob free-energy arguments. We find spontaneous segregation under the condition: L>R//L > R_{//}, and mixing under L<R//L < R_{//}, where L is the length of the box, and R//R_{//} the polymer extension in an infinite slit. Segregation time scales are determined by solving a mean first-passage time problem, and by performing Monte Carlo simulations. Predictions of the two methods show good agreement. Our results may elucidate a driving force for chromosomes segregation in bacteria

    Half metallic digital ferromagnetic heterostructure composed of a δ\delta-doped layer of Mn in Si

    Get PDF
    We propose and investigate the properties of a digital ferromagnetic heterostructure (DFH) consisting of a δ\delta-doped layer of Mn in Si, using \textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-dd and nearest-neighbor Si-pp states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis of the total and partial densities of states, band structure, Fermi surfaces and associated charge density reveals the marked two-dimensional nature of the half metallicity. The band lineup is found to be favorable for retaining the half metal character to near the Curie temperature (TCT_{C}). Being Si based and possibly having a high TCT_{C} as suggested by an experiment on dilutely doped Mn in Si, the heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let

    Runup and rundown generated by three-dimensional sliding masses

    Get PDF
    To study the waves and runup/rundown generated by a sliding mass, a numerical simulation model, based on the large-eddy-simulation (LES) approach, was developed. The Smagorinsky subgrid scale model was employed to provide turbulence dissipation and the volume of fluid (VOF) method was used to track the free surface and shoreline movements. A numerical algorithm for describing the motion of the sliding mass was also implemented. To validate the numerical model, we conducted a set of large-scale experiments in a wave tank of 104m long, 3.7m wide and 4.6m deep with a plane slope (1:2) located at one end of the tank. A freely sliding wedge with two orientations and a hemisphere were used to represent landslides. Their initial positions ranged from totally aerial to fully submerged, and the slide mass was also varied over a wide range. The slides were instrumented to provide position and velocity time histories. The time-histories of water surface and the runup at a number of locations were measured. Comparisons between the numerical results and experimental data are presented only for wedge shape slides. Very good agreement is shown for the time histories of runup and generated waves. The detailed three-dimensional complex flow patterns, free surface and shoreline deformations are further illustrated by the numerical results. The maximum runup heights are presented as a function of the initial elevation and the specific weight of the slide. The effects of the wave tank width on the maximum runup are also discussed

    Spontaneous Crystallization of Skyrmions and Fractional Vortices in the Fast-rotating and Rapidly-quenched Spin-1 Bose-Einstein Condensates

    Full text link
    We investigate the spontaneous generation of crystallized topological defects via the combining effects of fast rotation and rapid thermal quench on the spin-1 Bose-Einstein condensates. By solving the stochastic projected Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively, which can be imaged by using the polarization-dependent phase-contrast method

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)

    Full text link
    We report measurements of magnetothermopower and magnetoresistivity as a function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state thermopower shows a dramatic decrease after applying a magnetic field of 5 T, whereas the resistivity shows only a small change after applying the same field. Our results suggest that RuO2 layers are conducting and the magnetic field induced decrease of the overall thermopower is caused by the decrease of partial thermopower decrease associated with the spin entropy decrease of the carriers in the RuO2 layers.Comment: 21 pages, 6 figure

    Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene

    Full text link
    Bilayer silicene has richer physical properties than bilayer graphene due to its buckled structure together with its trigonal symmetric structure. The buckled structure arises from a large ionic radius of silicon, and the trigonal symmetry from a particular way of hopping between two silicenes. It is a topologically trivial insulator since it carries a trivial Z2\mathbb{Z}_{2} topological charge. Nevertheless, its physical properties are more akin to those of a topological insulator than those of a band insulator. Indeed, a bilayer silicene nanoribbon has edge modes which are almost gapless and helical. We may call it a quasi-topological insulator. An important observation is that the band structure is controllable by applying the electric field to a bilayer silicene sheet. We investigate the energy spectrum of bilayer silicene under electric field. Just as monolayer silicene undergoes a phase transition from a topological insulator to a band insulator at a certain electric field, bilayer silicene makes a transition from a quasi-topological insulator to a band insulator beyond a certain critical field. Bilayer silicene is a metal while monolayer silicene is a semimetal at the critical field. Furthermore we find that there are several critical electric fields where the gap closes due to the trigonal warping effect in bilayer silicene.Comment: 8 pages, 11 figures, to be published in J. Phys. Soc. Jp
    • …
    corecore