3,325 research outputs found

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    Urinary biomarker concentrations of captan, chlormequat, chlorpyrifos and cypermethrin in UK adults and children living near agricultural land

    Get PDF
    There is limited information on the exposure to pesticides experienced by UK residents living near agricultural land. This study aimed to investigate their pesticide exposure in relation to spray events. Farmers treating crops with captan, chlormequat, chlorpyrifos or cypermethrin provided spray event information. Adults and children residing ≤100 m from sprayed fields provided first-morning void urine samples during and outwith the spray season. Selected samples (1–2 days after a spray event and at other times (background samples)) were analysed and creatinine adjusted. Generalised Linear Mixed Models were used to investigate if urinary biomarkers of these pesticides were elevated after spray events. The final data set for statistical analysis contained 1518 urine samples from 140 participants, consisting of 523 spray event and 995 background samples which were analysed for pesticide urinary biomarkers. For captan and cypermethrin, the proportion of values below the limit of detection was greater than 80%, with no difference between spray event and background samples. For chlormequat and chlorpyrifos, the geometric mean urinary biomarker concentrations following spray events were 15.4 μg/g creatinine and 2.5 μg/g creatinine, respectively, compared with 16.5 μg/g creatinine and 3.0 μg/g creatinine for background samples within the spraying season. Outwith the spraying season, concentrations for chlorpyrifos were the same as those within spraying season backgrounds, but for chlormequat, lower concentrations were observed outwith the spraying season (12.3 μg/g creatinine). Overall, we observed no evidence indicative of additional urinary pesticide biomarker excretion as a result of spray events, suggesting that sources other than local spraying are responsible for the relatively low urinary pesticide biomarkers detected in the study population

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency ωJ=2eV\omega_J=2eV when ωJ\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure

    Hidden Order in the Cuprates

    Full text link
    We propose that the enigmatic pseudogap phase of cuprate superconductors is characterized by a hidden broken symmetry of d(x^2-y^2)-type. The transition to this state is rounded by disorder, but in the limit that the disorder is made sufficiently small, the pseudogap crossover should reveal itself to be such a transition. The ordered state breaks time-reversal, translational, and rotational symmetries, but it is invariant under the combination of any two. We discuss these ideas in the context of ten specific experimental properties of the cuprates, and make several predictions, including the existence of an as-yet undetected metal-metal transition under the superconducting dome.Comment: 12 pages of RevTeX, 9 eps figure

    Phase fluctuations and the pseudogap in YBa2Cu3Ox

    Full text link
    The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field value (Tc-MF) by phase fluctuations of the superconducting order parameter. For overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We find that Tc-MF exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.Comment: 9 pages, 3 Figure

    Renormalized mean-field theory of the neutron scattering in cuprate superconductors

    Full text link
    The magnetic excitation spectrum of the t-t'-J-model is studied in mean-field theory and compared to inelastic neutron-scattering (INS) experiments on YBCO and BSCCO superconductors. Within the slave-particle formulation the dynamical spin response is calculated from a renormalized Fermi liquid with an effective interaction ~J in the magnetic particle--hole channel. We obtain the so-called 41meV resonance at wave vector (pi,pi) as a collective spin-1 excitation in the d-wave superconducting state. It appears sharp (undamped), if the underlying Fermi surface is hole-like with a sufficient next-nearest-neighbor hopping t'<0. The double-layer structure of YBCO or BSCCO is not important for the resonance to form. The resonance energy \omega_{res} and spectral weight at optimal doping come out comparable to experiment. The observed qualitative behavior of \omega_{res} with hole filling is reproduced in the underdoped as well as overdoped regime. A second, much broader peak becomes visible in the magnetic excitation spectrum if the 2D wave-vector is integrated over. It is caused by excitations across the maximum gap, and in contrast to the resonance its energy is almost independent of doping. At energies above or below \omega_{res} the commensurate resonance splits into incommensurate peaks, located off (pi,pi). Below \omega_{res} the intensity pattern is of `parallel' type and the dispersion relation of incommensurate peaks has a negative curvature. This is in accordance with recent INS experiments on YBCO.Comment: 17pp including 14 figure

    Magnetic neutron scattering in hole doped cuprate superconductors

    Full text link
    A review is presented of the static and dynamic magnetic properties of hole-doped cuprate superconductors measured with neutron scattering. A wide variety of experiments are described with emphasis on the monolayer La_{2-x}(Sr,Ba)_{x}CuO_{4} and bilayer YBa_{2}Cu_{3}O_{6+x} cuprates. At zero hole doping, both classes of materials are antiferromagnetic insulators with large superexchange constants of J > 100 meV. For increasing hole doping, the cuprates become superconducting at a critical hole concentration of x_{c}=0.055. The development of new instrumentation at neutron beam sources coupled with the improvement in materials has lead to a better understanding of these materials and the underlying spin dynamics over a broad range of hole dopings. We will describe how the spin dispersion changes across the insulating to superconducting boundary as well as the static magnetic properties which are directly coupled with the superconductivity. Experiments directly probing the competing magnetic and superconducting order parameters involving magnetic fields, impurity doping, and structural order will be examined. Correlations between superconductivity and magnetism will also be discussed.Comment: 14 pages, 18 figures. To be published in Journal of the Physical Society of Japa

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
    • …
    corecore