695 research outputs found

    Nearby Optical Galaxies: Selection of the Sample and Identification of Groups

    Get PDF
    In this paper we describe the Nearby Optical Galaxy (NOG) sample, which is a complete, distance-limited (czcz\leq6000 km/s) and magnitude-limited (B\leq14) sample of \sim7000 optical galaxies. The sample covers 2/3 (8.27 sr) of the sky (b>20|b|>20^{\circ}) and appears to have a good completeness in redshift (98%). We select the sample on the basis of homogenized corrected total blue magnitudes in order to minimize systematic effects in galaxy sampling. We identify the groups in this sample by means of both the hierarchical and the percolation {\it friends of friends} methods. The resulting catalogs of loose groups appear to be similar and are among the largest catalogs of groups presently available. Most of the NOG galaxies (\sim60%) are found to be members of galaxy pairs (\sim580 pairs for a total of \sim15% of objects) or groups with at least three members (\sim500 groups for a total of \sim45% of objects). About 40% of galaxies are left ungrouped (field galaxies). We illustrate the main features of the NOG galaxy distribution. Compared to previous optical and IRAS galaxy samples, the NOG provides a denser sampling of the galaxy distribution in the nearby universe. Given its large sky coverage, the identification of groups, and its high-density sampling, the NOG is suited for the analysis of the galaxy density field of the nearby universe, especially on small scales

    Circadian period integrates network information through activation of the BMP signaling pathway

    Get PDF
    Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF) set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP) signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands

    New Frontiers in Measuring and Characterizing the HIV Reservoir

    Get PDF
    A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range

    BsmI, ApaI and TaqI Polymorphisms in the Vitamin D Receptor Gene (VDR) and Association with Lumbar Spine Pathologies: An Italian Case-Control Study.

    Get PDF
    Three adjacent single nucleotide polymorphisms of the vitamin D receptor gene (VDR) BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) are commonly studied in several pathologies. We aimed to evaluate the distribution of VDR BsmI, ApaI, and TaqI allele, genotype, and haplotype frequencies in an Italian cohort of 266 patients with lumbar spine disorders assessed by Magnetic Resonance Imaging and 252 asymptomatic controls. The exposure to putative risk factors was evaluated by a questionnaire. Polymorphisms were detected by PCR-RFLP and TaqMan\uae SNP Genotyping Assay. The results were statistically adjusted for the identified conventional risk factors. The three SNPs were in linkage disequilibrium. For all cases BbAaTT was a 3-fold risk factor OR = 3.38), whereas bbAATT (OR = 0.22), and bbaaTT (OR = 0.47) genotypes were found to be protective. Specifically, for patients affected by disc herniation only (n = 88) and all lumbar pathologies excluding stenosis and/or spondylolistesis (n = 215) B allele, Bb, Aa, and BbAaTT genotypes were risky, whereas b allele, bb, aa, and bbaaTT genotypes were protective. In patients affected by osteochondrosis with or without disc hernation (n = 50), T allele, Aa, and bbAaTT genotypes were risky, whereas t allele, AA, tt genotypes were protective. In patients affected by stenosis and/or spondylolistesis (n = 51) no significant associations were found. This is the first study showing an association of the three genetic VDR variants BsmI, ApaI, and TaqI and lumbar spine pathologies. Our study contributes to delineate genetic risk factors for specific subgroups of patients with lumbar spine pathologies highlighting the importance of haplotype analysis, and of detailed clinical evaluation of the patients for identification of genetic biomarkers

    Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation

    Get PDF
    In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals

    Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase

    Get PDF
    Rapamycin, a specific inhibitor of the serine/threonine mTOR kinase, markedly inhibited both cell growth and apoptosis in human B-cell lines. Besides arresting cells in G(1) by increasing p27(kip1), rapamycin tripled the cellular level of the BCL-2 protein. The activity was dose-dependent and specific for the p27(kip1) and BCL-2 proteins. Rapamycin did not affect bcl-2 mRNA although it increased cellular BCL-2 concentration by inhibiting phosphorylation, a mechanism initiating the decay process. To add new insight, we combined rapamycin treatment with treatment by taxol, which, by damaging microtubules, can phosphorylate BCL-2 and activate apoptosis. It was found that the mTOR kinase was activated in cells treated with taxol or with nocodazole although it was inhibited in cells pre-treated with rapamycin. BCL-2 phosphorylation, apoptosis and hyperdiploidy were also inhibited by rapamycin. In contrast, taxol-induced microtubule stabilization or metaphase synchronization were not inhibited by rapamycin. Taken together, these findings indicate that mTOR belongs to the enzymatic cascade that, starting from damaged microtubules, phosphorylates BCL-2. By regulating apoptosis, in addition to the control of a multitude of growth-related pathways, mTOR plays a nodal role in signaling G(1) and G(2)-M events

    Coordinated calcium signalling in cochlear sensory and non‐sensory cells refines afferent innervation of outer hair cells

    Get PDF
    Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine‐tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non‐sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non‐sensory cells of the greater epithelial ridge cause, via ATP‐induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience‐independent Ca2+ signals from sensory and non‐sensory cells
    corecore