1,084 research outputs found

    Dissecting the Mechanisms Underlying Short-Interval Intracortical Inhibition Using Exercise

    Get PDF
    Recently, 2 physiologically distinct phases of short-interval intracortical inhibition (SICI) have been identified, a larger phase at interstimulus interval (ISI) 3 ms and a smaller phase at ISI 1 ms. While the former is mediated by synaptic processes, the mechanisms underlying the first phase of SICI remain a matter of debate. Separately, it is known that fatiguing hand exercise reduces SICI, a measure of cortical excitability. Consequently, the present study assessed effects of fatiguing hand exercise on the 2 SICI phases, using threshold tracking transcranial magnetic stimulation techniques, to yield further information on underlying mechanisms. Studies were undertaken on 22 subjects, with SICI assessed at baseline, after each voluntary contraction (VC) period of 120 s and 5, 10, and 20 min after last VC, with responses recorded over abductor pollicis brevis. Exercise resulted in significant reduction of SICI at ISI 1 ms (SICIbaseline 9.5 ± 2.7%; SICIMAXIMUM REDUCTION 2.5 ± 2.5%, P < 0.05) and 3 ms (SICIbaseline 16.8 ± 1.7%; SICIMAXIMUM REDUCTION 11.6 ± 2.1%, P < 0.05), with the time course of reduction being different for the 2 phases. Taken together, findings from the present study suggest that synaptic processes were the predominant mechanism underlying the different phases of SICI

    Plastic optical fibre sensor for spine bending monitoring

    Get PDF
    peer-reviewedThis paper presents a study on the application of plastic optical fibre for spine bending monitoring based on an intensity modulation. The bending angle is measured as the angle between the emitting and receiving fibres is changed. The measured light attenuation is compared with a theoretical evaluation and the differences between these values are discussed. It was found that the light attenuation for the light intensity agreed well (margin of error < 15%) with the theoretical value for the range between 180o (representing no bend) and 200o and it was significantly increased for the bending angle beyond that value due to the effect of fibre gap increment which resulted in a less reliable experimental estimation.PUBLISHEDpeer-reviewe

    Numerical Studies of a Confocal Resonator Pick-Up with FEMLAB

    Get PDF
    Diagnostic devices aimed at measuring beam profiles in high intensity accelerators are often perturbed by microwave fields generated by the beam itself upstream of the detection device, which propagate inside the vacuum pipe. These parasitic waveguide modes can significantly reduce the signal-to-noise ratio and thus the sensitivity of the beam monitor. This warrants investigation of detection devices that are sensitive to the direct electromagnetic fields of the beam, but largely ignore the parasitic waveguide modes. A new pick-up based on a confocal resonator configuration situated transversely to the direction of propagation of the beam is currently under development at Uppsala University, Sweden. Since a confocal resonator can have a high quality factor for the diffraction losses, then reciprocity suggests that it only couples weakly to external fields while keeping anyway a significant coupling to the direct fields of the beam. Numerical simulations were performed with FEMLAB to better characterize the electromagnetic properties of a confocal resonator pick-up to be operated in the multi-GHz range, especially in terms of eigen-frequencies and coupling to external electromagnetic fields. Our results were then compared to analytical predictions and a good agreement was found, despite a few limitations in the computation of the resonant modes. Having recently built a first confocal resonator prototype, we also performed experimental cross-checks of our numerical studies with a microwave network analyzer. Our results are presented in detail in this report and we discuss further applications of the confocal resonator microwave pick-up

    Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As

    Full text link
    The effect of annealing at 250 C on the carrier depth profile, Mn distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low temperatures, is studied by a variety of analytical methods. The vertical gradient in hole concentration, revealed by electrochemical capacitance-voltage profiling, is shown to play a key role in the understanding of conductivity and magnetization data. The gradient, basically already present in as-grown samples, is strongly influenced by post-growth annealing. From secondary ion mass spectroscopy it can be concluded that, at least in thick layers, the change in carrier depth profile and thus in conductivity is not primarily due to out-diffusion of Mn interstitials during annealing. Two alternative possible models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.

    Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: An artifact removal relevance analysis

    Get PDF
    The electroencephalogram (EEG) constitutes a relevant tool to study neural dynamics and to develop brain-machine interfaces (BMI) for rehabilitation of patients with paralysis due to stroke. However, the EEG is easily contaminated by artifacts of physiological origin, which can pollute the measured cortical activity and bias the interpretations of such data. This is especially relevant when recording EEG of stroke patients while they try to move their paretic limbs, since they generate more artifacts due to compensatory activity. In this paper, we study how physiological artifacts (i.e., eye movements, motion artifacts, muscle artifacts and compensatory movements with the other limb) can affect EEG activity of stroke patients. Data from 31 severely paralyzed stroke patients performing/attempting grasping movements with their healthy/paralyzed hand were analyzed offline. We estimated the cortical activation as the event-related desynchronization (ERD) of sensorimotor rhythms and used it to detect the movements with a pseudo-online simulated BMI. Automated state-of-the-art methods (linear regression to remove ocular contaminations and statistical thresholding to reject the other types of artifacts) were used to minimize the influence of artifacts. The effect of artifact reduction was quantified in terms of ERD and BMI performance. The results reveal a significant contamination affecting the EEG, being involuntary muscle activity the main source of artifacts. Artifact reduction helped extracting the oscillatory signatures of motor tasks, isolating relevant information from noise and revealing a more prominent ERD activity. Lower BMI performances were obtained when artifacts were eliminated from the training datasets. This suggests that artifacts produce an optimistic bias that improves theoretical accuracy but may result in a poor link between task-related oscillatory activity and BMI peripheral feedback. With a clinically relevant dataset of stroke patients, we evidence the need of appropriate methodologies to remove artifacts from EEG datasets to obtain accurate estimations of the motor brain activity.This study was funded by the fortüne-Program of the University of Tübingen (2422-0-1 and 2452-0-0), the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ 13GW0053) and AMORSA (FKZ 16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the Basque Government Science Program (EXOTEK: KK 2016/00083). The work of A. Insausti-Delgado was supported by the Basque Government's scholarship for predoctoral students

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex
    corecore