3,435 research outputs found
FORTE satellite constraints on ultra-high energy cosmic particle fluxes
The FORTE (Fast On-orbit Recording of Transient Events) satellite records
bursts of electromagnetic waves arising from near the Earth's surface in the
radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna.
We investigate the possible RF signature of ultra-high energy cosmic-ray
particles in the form of coherent Cherenkov radiation from cascades in ice. We
calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE)
neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK)
cutoff. Some constraints on supersymmetry model parameters are also estimated
due to the limits that FORTE sets on the UHE neutralino flux. The FORTE
database consists of over 4 million recorded events to date, including in
principle some events associated with UHE neutrinos. We search for candidate
FORTE events in the period from September 1997 to December 1999. The candidate
production mechanism is via coherent VHF radiation from a UHE neutrino shower
in the Greenland ice sheet. We demonstrate a high efficiency for selection
against lightning and anthropogenic backgrounds. A single candidate out of
several thousand raw triggers survives all cuts, and we set limits on the
corresponding particle fluxes assuming this event represents our background
level.Comment: added a table, updated references and Figure 8, this version is
submitted to Phys. Rev.
Canonical formulation of N = 2 supergravity in terms of the Ashtekar variable
We reconstruct the Ashtekar's canonical formulation of N = 2 supergravity
(SUGRA) starting from the N = 2 chiral Lagrangian derived by closely following
the method employed in the usual SUGRA. In order to get the full graded algebra
of the Gauss, U(1) gauge and right-handed supersymmetry (SUSY) constraints, we
extend the internal, global O(2) invariance to local one by introducing a
cosmological constant to the chiral Lagrangian. The resultant Lagrangian does
not contain any auxiliary fields in contrast with the 2-form SUGRA and the SUSY
transformation parameters are not constrained at all. We derive the canonical
formulation of the N = 2 theory in such a manner as the relation with the usual
SUGRA be explicit at least in classical level, and show that the algebra of the
Gauss, U(1) gauge and right-handed SUSY constraints form the graded algebra,
G^2SU(2)(Osp(2,2)). Furthermore, we introduce the graded variables associated
with the G^2SU(2)(Osp(2,2)) algebra and we rewrite the canonical constraints in
a simple form in terms of these variables. We quantize the theory in the
graded-connection representation and discuss the solutions of quantum
constraints.Comment: 19 pages, Latex, corrected some typos and added a referenc
Hamiltonian thermodynamics of a Lovelock black hole
We consider the Hamiltonian dynamics and thermodynamics of spherically
symmetric spacetimes within a one-parameter family of five-dimensional Lovelock
theories. We adopt boundary conditions that make every classical solution part
of a black hole exterior, with the spacelike hypersurfaces extending from the
horizon bifurcation three-sphere to a timelike boundary with fixed intrinsic
metric. The constraints are simplified by a Kucha\v{r}-type canonical
transformation, and the theory is reduced to its true dynamical degrees of
freedom. After quantization, the trace of the analytically continued Lorentzian
time evolution operator is interpreted as the partition function of a
thermodynamical canonical ensemble. Whenever the partition function is
dominated by a Euclidean black hole solution, the entropy is given by the
Lovelock analogue of the Bekenstein-Hawking entropy; in particular, in the low
temperature limit the system exhibits a dominant classical solution that has no
counterpart in Einstein's theory. The asymptotically flat space limit of the
partition function does not exist. The results indicate qualitative robustness
of the thermodynamics of five-dimensional Einstein theory upon the addition of
a nontrivial Lovelock term.Comment: 22 pages, REVTeX v3.
Commutator Leavitt path algebras
For any field K and directed graph E, we completely describe the elements of
the Leavitt path algebra L_K(E) which lie in the commutator subspace
[L_K(E),L_K(E)]. We then use this result to classify all Leavitt path algebras
L_K(E) that satisfy L_K(E)=[L_K(E),L_K(E)]. We also show that these Leavitt
path algebras have the additional (unusual) property that all their Lie ideals
are (ring-theoretic) ideals, and construct examples of such rings with various
ideal structures.Comment: 24 page
On the response of a particle detector in Anti-de Sitter spacetime
We consider the vacuum response of a particle detector in Anti-de Sitter
spacetime, and in particular analyze how spacetime features such as curvature
and dimensionality affect the response spectrum of an accelerated detector. We
calculate useful limits on Wightman functions, analyze the dynamics of the
detector in terms of vacuum fluctuations and radiation reactions, and discuss
the thermalization process for the detector. We also present a generalization
of the GEMS approach and obtain the Gibbons-Hawking temperature of de Sitter
spacetime as an embedded Unruh temperature in a curved Anti-de Sitter
spacetime.Comment: 13 pages, no figures, accepted for publication in Class. Quantum Gra
Hepatitis C viral evolution in genotype 1 treatment-naïve and treatment-experienced patients receiving telaprevir-based therapy in clinical trials
Background: In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR.
Methods: Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment.
Results: Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients.
Conclusions: A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment
- …