97 research outputs found

    Remarkable Response of Native Fishes to Invasive Trout Suppression Varies With Trout Density, Temperature, and Annual Hydrology

    Get PDF
    Recovery of imperiled fishes can be achieved through suppression of invasives, but outcomes may vary with environmental conditions. We studied the response of imperiled desert fishes to an invasive brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) suppression program in a Colorado River tributary, with natural flow and longitudinal variation in thermal characteristics. We investigated trends in fish populations related to suppression and tested hypotheses about the impacts of salmonid densities, hydrologic variation, and spatial–thermal gradients on the distribution and abundance of native fish species using zero-inflated generalized linear mixed effects models. Between 2012 and 2018, salmonids declined 89%, and native fishes increased dramatically (∼480%) once trout suppression surpassed ∼60%. Temperature and trout density were consistently retained in the top models predicting the abundance and distribution of native fishes. The greatest increases occurred in warmer reaches and in years with spring flooding. Surprisingly, given the evolution of native fishes in disturbance-prone systems, intense, monsoon-driven flooding limited native fish recruitment. Applied concertedly, invasive species suppression and efforts to mimic natural flow and thermal regimes may allow rapid and widespread native fish recovery

    Exploring Metapopulation-Scale Suppression Alternatives for a Global Invader in a River Network Experiencing Climate Change

    Get PDF
    Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially-explicit metapopulation viability model to explore suppression strategies for ecologically-damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary within Grand Canyon National Park. Our goals were to: 1) estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation, 2) quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and 3) estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. We included scenarios targeting different life-stages with spatially-varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life-stages; subpopulations were most sensitive to age-0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was triple compared to a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was only achieved by re-focusing and increasing suppression. Our modeling approach improved our understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies, and ultimately, maintenance of populations of endemic fishes

    Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics

    Get PDF
    The increasing availability of high-frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs

    Invader removal triggers competitive release in a threatened avian predator

    Get PDF
    Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species

    Range-Wide Declines of Northern Spotted Owl Populations in the Pacific Northwest: A Meta-Analysis

    Get PDF
    The northern spotted owl (Strix occidentalis caurina) inhabits older coniferous forests in the Pacific Northwest and has been at the center of forest management issues in this region. The immediate threats to this federally listed species include habitat loss and competition with barred owls (Strix varia), which invaded from eastern North America. We conducted a prospective meta-analysis to assess population trends and factors affecting those trends in northern spotted owls using 26 years of survey and capture-recapture data from 11 study areas across the owls\u27 geographic range to analyze demographic traits, rates of population change, and occupancy parameters for spotted owl territories. We found that northern spotted owl populations experienced significant declines of 6–9% annually on 6 study areas and 2–5% annually on 5 other study areas. Annual declines translated to ≤35% of the populations remaining on 7 study areas since 1995. Barred owl presence on spotted owl territories was the primary factor negatively affecting apparent survival, recruitment, and ultimately, rates of population change. Analysis of spotted and barred owl detections in an occupancy framework corroborated the capture-recapture analyses with barred owl presence increasing territorial extinction and decreasing territorial colonization of spotted owls. While landscape habitat components reduced the effect of barred owls on these rates of decline, they did not reverse the negative trend. Our analyses indicated that northern spotted owl populations potentially face extirpation if the negative effects of barred owls are not ameliorated while maintaining northern spotted owl habitat across their range

    Range-wide sources of variation in reproductive rates of northern spotted owls

    Get PDF
    We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993–2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades

    Home on the Range: Factors Explaining Partial Migration of African Buffalo in a Tropical Environment

    Get PDF
    Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call “expanders”. Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area
    corecore