45,081 research outputs found

    On the limits of measuring the bulge and disk properties of local and high-redshift massive galaxies

    Full text link
    A considerable fraction of the massive quiescent galaxies at \emph{z} ≈\approx 2, which are known to be much more compact than galaxies of comparable mass today, appear to have a disk. How well can we measure the bulge and disk properties of these systems? We simulate two-component model galaxies in order to systematically quantify the effects of non-homology in structures and the methods employed. We employ empirical scaling relations to produce realistic-looking local galaxies with a uniform and wide range of bulge-to-total ratios (B/TB/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at \emph{z} ≈\approx 2. This provides the most complete set of simulations to date for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/TB/T. We confirm that the size of these massive, compact galaxies can be measured robustly using a single S\'{e}rsic fit. We can measure B/TB/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/TB/T \gax\ 0.2. The disk component, by contrast, can be measured with little difficulty

    Tracking decision-making during architectural design

    Get PDF
    There is a powerful cocktail of circumstances governing the way decisions are made during the architectural design process of a building project. There is considerable potential for misunderstandings, inappropriate changes, change which give rise to unforeseen difficulties, decisions which are not notified to all interested parties, and many other similar problems. The paper presents research conducted within the frame of the EPSRC funded ADS project aiming at addressing the problems linked with the evolution and changing environment of project information to support better decision-making. The paper presents the conceptual framework as well as the software environment that has been developed to support decision-making during building projects, and reports on work carried out on the application of the approach to the architectural design stage. This decision-tracking environment has been evaluated and validated by professionals and practitioners from industry using several instruments as described in the paper

    A probabilistic model checking approach to analysing reliability, availability, and maintainability of a single satellite system

    Get PDF
    Satellites now form a core component for space based systems such as GPS and GLONAS which provide location and timing information for a variety of uses. Such satellites are designed to operate in-orbit and have lifetimes of 10 years or more. Reliability, availability and maintainability (RAM) analysis of these systems has been indispensable in the design phase of satellites in order to achieve minimum failures or to increase mean time between failures (MTBF) and thus to plan maintainability strategies, optimise reliability and maximise availability. In this paper, we present formal modelling of a single satellite and logical specification of its reliability, availability and maintainability properties. The probabilistic model checker PRISM has been used to perform automated quantitative analyses of these properties

    How Robust Are the Size Measurements of High-redshift Compact Galaxies?

    Full text link
    Massive quiescent galaxies at z≈2z \approx 2 are apparently much more compact than galaxies of comparable mass today. How robust are these size measurements? We perform comprehensive simulations to determine possible biases and uncertainties in fitting single-component light distributions to real galaxies. In particular, we examine the robustness of the measurements of the luminosity, size, and other structural parameters. We devise simulations with increasing realism to systematically disentangle effects due to the technique (specifically using GALFIT) and the intrinsic structures of the galaxies. By accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z≈2z \approx 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. In fact, we find that fitting multi-component galaxies with a single S\'ersic profile, the procedure most commonly adopted in the literature, biases the inferred sizes higher by up to 10% - 20%, which accentuates the amount of size evolution required. If the sky estimation has been done robustly and the model for the point-spread function is fairly accurate, GALFIT can retrieve the properties of single-component galaxies over a wide range of signal-to-noise ratios without introducing any systematic errors.Comment: 18 pages, 11 figures, 8 tables; Accepted for publication in Ap

    Orbital elements of barium stars formed through a wind accretion scenario

    Get PDF
    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for publication in A &

    Risk-limiting Dispatch with Operation Constraints

    Get PDF
    As an extension of the current theory of risk-limiting dispatch for a system with large-scale renewable integration, this paper presents a model for risk-limiting dispatch with operation constraints, such as generation limitation and network constraint. By proposing and solving four interrelated models, the problem for risk-limiting dispatch with network constraint is finally solved by using sequential optimization. Through the analysis of the model, the paper points out the feasible procedure of dispatch decision, including determining the optimal output and the generators needed to be scheduled. With this dispatch approach, the lowest dispatch cost of the whole dispatch process can be obtained.published_or_final_versio
    • …
    corecore