49,114 research outputs found

    Neutron Stars with Bose-Einstein Condensation of Antikaons as MIT Bags

    Full text link
    We investigate the properties of an antikaon in medium, regarding itas a MIT bag. We first construct the MIT bag model for a kaon withσ\sigma^* and ϕ\phi in order to describe the interaction ofss-quarks in hyperonic matter in the framework of the modifiedquark-meson coupling model. The coupling constant gσBKg'^{B_K}_\sigmain the density-dependent bag constant B(σ)B(\sigma) is treated as afree parameter to reproduce the optical potential of a kaon in asymmetric matter and all other couplings are determined by usingSU(6) symmetry and the quark counting rule. With various values ofthe kaon potential, we calculate the effective mass of a kaon inmedium to compare it with that of a point-like kaon. We thencalculate the population of octet baryons, leptons and KK^- and theequation of state for neutron star matter. The results show thatkaon condensation in hyperonic matter is sensitive to the ss-quarkinteraction and also to the way of treating the kaon. The mass andthe radius of a neutron star are obtained by solving theTolmann-Oppenheimer-Volkoff equation.Comment: 14 figure

    Provable Deterministic Leverage Score Sampling

    Full text link
    We explain theoretically a curious empirical phenomenon: "Approximating a matrix by deterministically selecting a subset of its columns with the corresponding largest leverage scores results in a good low-rank matrix surrogate". To obtain provable guarantees, previous work requires randomized sampling of the columns with probabilities proportional to their leverage scores. In this work, we provide a novel theoretical analysis of deterministic leverage score sampling. We show that such deterministic sampling can be provably as accurate as its randomized counterparts, if the leverage scores follow a moderately steep power-law decay. We support this power-law assumption by providing empirical evidence that such decay laws are abundant in real-world data sets. We then demonstrate empirically the performance of deterministic leverage score sampling, which many times matches or outperforms the state-of-the-art techniques.Comment: 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin

    Micro Balloon Actuators for Aerodynamic Control

    Get PDF
    A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been characterized in a wind tunnel to assess their suitability as aerodynamic control surfaces and flight-tested on a jet fighter to assess their resistance to varied temperatures and pressures at high velocity

    Crumpling wires in two dimensions

    Full text link
    An energy-minimal simulation is proposed to study the patterns and mechanical properties of elastically crumpled wires in two dimensions. We varied the bending rigidity and stretching modulus to measure the energy allocation, size-mass exponent, and the stiffness exponent. The mass exponent is shown to be universal at value DM=1.33D_{M}=1.33. We also found that the stiffness exponent α=0.25\alpha =-0.25 is universal, but varies with the plasticity parameters ss and θp\theta_{p}. These numerical findings agree excellently with the experimental results

    Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

    Full text link
    The specific heat and thermal conductivity of the insulating ferrimagnet Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat CCm_m shows a characteristic T1.5T^{1.5} dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 104^{-4} eV. The ferromagnetic magnon thermal conductivity κm\kappa_m does not show the characteristic T2T^2 dependence below 0.8 K. To fit the κm\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
    corecore