800,924 research outputs found

    A hidden constant in the anomalous Hall effect of a high-purity magnet MnSi

    Full text link
    Measurements of the Hall conductivity in MnSi can provide incisive tests of theories of the anomalous Hall (AH) effect, because both the mean-free-path and magnetoresistance (MR) are unusually large for a ferromagnet. The large MR provides an accurate way to separate the AH conductivity σxyA\sigma_{xy}^A from the ordinary Hall conductivity σxyN\sigma_{xy}^N. Below the Curie temperature TCT_C, σxyA\sigma_{xy}^A is linearly proportional to M M (magnetization) with a proportionality constant SHS_H that is independent of both TT and HH. In particular, SHS_H remains a constant while σxyN\sigma_{xy}^N changes by a factor of 100 between 5 K and TCT_C. We discuss implications of the hidden constancy in SHS_H.Comment: 5 pages, 4 figures. Minor change

    Weak-Light, Zero to -\pi Lossless Kerr-Phase Gate in Quantum-well System via Tunneling Interference Effect

    Full text link
    We examine a Kerr phase gate in a semiconductor quantum well structure based on the tunnelling interference effect. We show that there exist a specific signal field detuning, at which the absorption/amplification of the probe field will be eliminated with the increase of the tunnelling interference. Simultaneously, the probe field will acquire a -\pi phase shift at the exit of the medium. We demonstrate with numerical simulations that a complete 180^\circ phase rotation for the probe field at the exit of the medium is achieved, which may result in many applications in information science and telecommunication

    The Strong Coupling Limit of the Scaling Function from the Quantum String Bethe Ansatz

    Full text link
    Using the quantum string Bethe ansatz we derive the one-loop energy of a folded string rotating with angular momenta (S,J) in AdS_3 x S^1 inside AdS_5 x S^5 in the limit 1 << J << S, z=\lambda^(1/2) log(S/J) /(\pi J) fixed. The one-loop energy is a sum of two contributions, one originating from the Hernandez-Lopez phase and another one being due to spin chain finite size effects. We find a result which at the functional level exactly matches the result of a string theory computation. Expanding the result for large z we obtain the strong coupling limit of the scaling function for low twist, high spin operators of the SL(2) sector of N=4 SYM. In particular we recover the famous -3 log(2)/\pi. Its appearance is a result of non-trivial cancellations between the finite size effects and the Hernandez-Lopez correction.Comment: 18 pages, one figure, v2: footnote changed, v3: reference added, typo correcte

    Adiabatic passage of collective excitations in atomic ensembles

    Full text link
    We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.Comment: 7 pages, 2 figure
    • …
    corecore