289 research outputs found
数値地図データセットからの情報抽出および汎用地図ツールへの転用
We followed the abundance and distribution of ammonia-oxidizing Archaea (AOA) in the North Sea from April 2003 to February 2005 and from October 2007 to March 2008 by quantification of archaeal genes and core glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids in suspended particulate matter, to determine whether their abundance in the North Sea is seasonal. GDGT and gene abundance increased during winters and was low during the summer. Crenarchaeol-a GDGT specific to AOA-was a major fraction of the GDGTs and varied in concert with AOA gene abundance, indicating that AOA are the predominant source of crenarchaeol. The presence of crenarchaeol-based intact polar lipids (IPLs) confirmed that the GDGTs recovered were derived from living AOA, as IPLs are rapidly degraded upon cell senescence and thus their occurrence represents living biomass more robustly than their fossil (i.e., core GDGT) counterparts. Dark incubations of North Sea water sampled during the 2007-2008 seasonal cycle with C-13-labeled bicarbonate revealed incorporation of inorganic carbon into IPL-derived GDGTs, directly showing autotrophic production of Thaumarchaeota biomass during the winter. Inhibition of C-13 uptake by nitrification inhibitors confirmed that ammonia oxidation was the main source of energy for carbon fixation. Winter blooms of planktonic AOA in the North Sea were recurrent and predictable, occurring annually between November and February, emphasizing the potential importance of AOA in nitrogen cycling in the North Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Intertropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: Sedimentary ancient DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4500 and 3000 years ago occurred during a period characterized by a series of weak interhemispheric temperature contrast intervals, which we identify as the early neoglacial anomalies (ENA). The strong winter monsoons during ENA were accompanied by changes in wind and precipitation patterns that are particularly evident across the eastern Northern Hemisphere and tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push-pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of the rural late Harappans during that time as the first Iron Age culture established itself on the Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive land cover changes due to aridification of the tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene thermal maximum to the cooler Neoglacial
Noise properties of the CoRoT data: a planet-finding perspective
In this short paper, we study the photometric precision of stellar light
curves obtained by the CoRoT satellite in its planet finding channel, with a
particular emphasis on the timescales characteristic of planetary transits.
Together with other articles in the same issue of this journal, it forms an
attempt to provide the building blocks for a statistical interpretation of the
CoRoT planet and eclipsing binary catch to date.
After pre-processing the light curves so as to minimise long-term variations
and outliers, we measure the scatter of the light curves in the first three
CoRoT runs lasting more than 1 month, using an iterative non-linear filter to
isolate signal on the timescales of interest. The bevhaiour of the noise on 2h
timescales is well-described a power-law with index 0.25 in R-magnitude,
ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the
pre-launch specification, though still a factor 2-3 above the photon noise due
to residual jitter noise and hot pixel events. There is evidence for a slight
degradation of the performance over time. We find clear evidence for enhanced
variability on hours timescales (at the level of 0.5 mmag) in stars identified
as likely giants from their R-magnitude and B-V colour, which represent
approximately 60 and 20% of the observed population in the direction of Aquila
and Monoceros respectively. On the other hand, median correlated noise levels
over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.Comment: 5 pages, 4 figures, accepted for publication in A&
Quantifying Adhesion Mechanisms and Dynamics of Human Hematopoietic Stem and Progenitor Cells
Using planar lipid membranes with precisely defined concentrations of specific ligands, we have determined the binding strength between human hematopoietic stem cells (HSC) and the bone marrow niche. The relative significance of HSC adhesion to the surrogate niche models via SDF1α-CXCR4 or N-cadherin axes was quantified by (a) the fraction of adherent cells, (b) the area of tight adhesion, and (c) the critical pressure for cell detachment. We have demonstrated that the binding of HSC to the niche model is a cooperative process, and the adhesion mediated by the CXCR4- SDF1α axis is stronger than that by homophilic N-cadherin binding. The statistical image analysis of stochastic morphological dynamics unraveled that HSC dissipated energy by undergoing oscillatory deformation. The combination of an in vitro niche model and novel physical tools has enabled us to quantitatively determine the relative significance of binding mechanisms between normal HSC versus leukemia blasts to the bone marrow niche
Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea : a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids
Author Posting. © Blackwell, 2007. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 9 (2007): 1001-1016, doi:10.1111/j.1462-2920.2006.01227.x.Within the upper 400 m at western, central, and eastern stations in the world’s largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alfa-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether (GDGT) of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 μM including layers where previously anammox bacteria were described (Kuypers et al., 2003). Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared to the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 μM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared to the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.This work was supported by a grant from the Netherlands Organization for Scientific Research (VENI Innovational Research Grant nr. 813.13.001 to MJLC), an U. S. National Science Foundation grant OCE0117824 to SGW and the Spinoza award to JSSD, which we greatly acknowledge
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
Gender Asymmetry in Okun's Law in the Four PIGS Countries
AbstractCentred on the four PIGS countries (Portugal, Italy, Greece and Spain) and using the quarterly data from Q2/1998 until Q4/2014, the paper investigates whether there exists gender asymmetries in Okun's law and whether male unemployment reacts identically to economic fluctuations as female unemployment does. Whilst the trend components of output, male and female unemployment are estimated with the aid of the HP filter, Okun's relationships are modelled in the SVAR framework assuming that cyclical fluctuations of the economy and the labour market with both male and female labour force are endogenous. It is established that gender is indeed a factor that makes the respective segments of the labour market respond slightly differently to changes in real output
Prognostic impact of progression to induction chemotherapy and prior paclitaxel therapy in patients with germ cell tumors receiving salvage high-dose chemotherapy in the last 10 years: A study of the European Society for Blood and Marrow Transplantation Solid Tumors Working Party
Little is known about the prognostic impact of prior paclitaxel therapy and response to induction chemotherapy defined as the regimen preceding high-dose chemotherapy (HDCT) for the salvage therapy of advanced germ cell tumors. Twenty European Society for Blood and Marrow Transplantation centers contributed data on patients treated between 2002 and 2012. Paclitaxel used in either prior lines of therapy or in induction-mobilization regimens was considered. Multivariable Cox analyses of prespecified factors were undertaken on PFS and overall survival (OS). As of October 2013, data for 324 patients had been contributed to this study. One hundred and ninety-two patients (59.3%) had received paclitaxel. Sixty-one patients (19%) had a progression to induction chemotherapy, 234 (72%) a response (29 (9%) missing or granulocyte colony-stimulating factor without chemotherapy). Both progression to induction chemotherapy and prior paclitaxel were significantly associated with shorter OS univariably (P<0.001 and P=0.032). On multivariable analysis from the model with fully available data (N=216) progression to induction was significantly prognostic for PFS and OS (P=0.003), but prior paclitaxel was not (P=0.674 and P=0.739). These results were confirmed after multiple imputation of missing data. Progression to induction chemotherapy could be demonstrated as an independent prognostic factor, in contrast to prior paclitaxel
- …