80 research outputs found
Genetic susceptibility to feline infectious peritonitis in Birman cats.
Genetic factors are presumed to influence the incidence of feline infectious peritonitis (FIP), especially among pedigreed cats. However, proof for the existence of such factors has been limited and mainly anecdotal. Therefore, we sought evidence for genetic susceptibility to FIP using feline high density single nucleotide polymorphism (SNP) arrays in a genome-wide association study (GWAS). Birman cats were chosen for GWAS because they are highly inbred and suffer a high incidence of FIP. DNA from 38 Birman cats that died of FIP and 161 healthy cats from breeders in Denmark and USA were selected for genotyping using 63K SNPs distributed across the feline genome. Danish and American Birman cats were closely related and the populations were therefore combined and analyzed in two manners: (1) all cases (FIP) vs. all controls (healthy) regardless of age, and (2) cases 1½ years of age and younger (most susceptible) vs. controls 2 years of age and older (most resistant). GWAS of the second cohort was most productive in identifying significant genome-wide associations between case and control cats. Four peaks of association with FIP susceptibility were identified, with two being identified on both analyses. Five candidate genes ELMO1, RRAGA, TNFSF10, ERAP1 and ERAP2, all relevant to what is known about FIP virus pathogenesis, were identified but no single association was fully concordant with the disease phenotype. Difficulties in doing GWAS in cats and interrogating complex genetic traits were discussed
Cyclospora cayetanensis among expatriate and indigenous populations of West Java, Indonesia.
From January 1995 through July 1998, we investigated the occurrence of Cyclospora cayetanensis infection associated with gastrointestinal illness or diarrhea in foreign residents and natives of West Java, Indonesia. We found that C. cayetanensis was the main protozoal cause of gastrointestinal illness and diarrhea in adult foreign residents during the wet season. The parasite rarely caused illness in the indigenous population or in children
Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy
AbstractEmery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells – a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype
Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease
Two closely related genes, the presenilins ( PS ), located at chromosomes
14q24.3 and 1q42.1, have been identified for autosomal dominant Alzheimer
disease (AD) with onset age below 65 years (presenile AD). We performed a
systematic mutation analysis of all coding and 5'-non-coding exons of PS
-1 and PS -2 in a population-based epidemiological series of 101 unrelated
familial and sporadic presenile AD cases. The familial cases included 10
patients of autosomal dominant AD families sampled for linkage analysis
studies. In all pat
Immunohistochemistry on a Panel of Emery-Dreifuss Muscular Dystrophy Samples Reveals Nuclear Envelope Proteins as Inconsistent Markers for Pathology
Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few Emery–Dreifuss muscular dystrophy mutations raised the possibility that such protein redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked to 8 different genes encoding nuclear envelope proteins, raising the question of whether a particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and tissue sections from a panel of nine Emery–Dreifuss muscular dystrophy patients (4 male, 5 female) including those carrying emerin and FHL1 (X-linked) and several lamin A (autosomal dominant) mutations were stained for the proteins linked to the disorder. As tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific pathologies of different nuclear envelopathies, patient samples were also stained for several muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in individual patient cells, none exhibited defects through the larger patient panel. Muscle-specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic reticulum, but most patient samples exhibited a moderate redistribution favouring the sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein distribution indicates that such staining will be unavailing for general diagnostics, though it remains possible that specific mutations exhibiting protein distribution defects might reflect a particular clinical variant. These findings further argue that multiple pathways can lead to the generally similar pathologies of this disorder while at the same time the different cellular phenotypes observed possibly may help explain the considerable clinical variation of EDMD
Recommended from our members
Genetic susceptibility to feline infectious peritonitis in Birman cats.
Genetic factors are presumed to influence the incidence of feline infectious peritonitis (FIP), especially among pedigreed cats. However, proof for the existence of such factors has been limited and mainly anecdotal. Therefore, we sought evidence for genetic susceptibility to FIP using feline high density single nucleotide polymorphism (SNP) arrays in a genome-wide association study (GWAS). Birman cats were chosen for GWAS because they are highly inbred and suffer a high incidence of FIP. DNA from 38 Birman cats that died of FIP and 161 healthy cats from breeders in Denmark and USA were selected for genotyping using 63K SNPs distributed across the feline genome. Danish and American Birman cats were closely related and the populations were therefore combined and analyzed in two manners: (1) all cases (FIP) vs. all controls (healthy) regardless of age, and (2) cases 1½ years of age and younger (most susceptible) vs. controls 2 years of age and older (most resistant). GWAS of the second cohort was most productive in identifying significant genome-wide associations between case and control cats. Four peaks of association with FIP susceptibility were identified, with two being identified on both analyses. Five candidate genes ELMO1, RRAGA, TNFSF10, ERAP1 and ERAP2, all relevant to what is known about FIP virus pathogenesis, were identified but no single association was fully concordant with the disease phenotype. Difficulties in doing GWAS in cats and interrogating complex genetic traits were discussed
- …