6,881 research outputs found
And what if gravity is intrinsically quantic ?
Since the early days of search for a quantum theory of gravity the attempts
have been mostly concentrated on the quantization of an otherwise classical
system. The two most contentious candidate theories of gravity, sting theory
and quantum loop gravity are based on a quantum field theory - the latter is a
quantum field theory of connections on a SU(2) group manifold and former a
quantum field theory in two dimensional spaces. Here we argue that there is a
very close relation between quantum mechanics and gravity. Without gravity
quantum mechanics becomes ambiguous. We consider this observation as the
evidence for an intrinsic relation between these fundamental laws of nature. We
suggest a quantum role and definition for gravity in the context of a quantum
universe, and present a preliminary formulation for gravity in a system with a
finite number of particles.Comment: 8 pages, 1 figure. To appear in the proceedings of the DICE2008
conference, Castiglioncello, Tuscany, Italy, 22-26 Sep. 2008. V2: some typos
remove
A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories
We present a general method for the analysis of the stability of static,
spherically symmetric solutions to spherically symmetric perturbations in an
arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves
fixing the gauge and solving the linearized gravitational field equations to
eliminate the metric perturbation variable in terms of the matter variables. In
a wide class of cases--which include f(R) gravity, the Einstein-aether theory
of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining
perturbation equations for the matter fields are second order in time. We show
how the symplectic current arising from the original Lagrangian gives rise to a
symmetric bilinear form on the variables of the reduced theory. If this
bilinear form is positive definite, it provides an inner product that puts the
equations of motion of the reduced theory into a self-adjoint form. A
variational principle can then be written down immediately, from which
stability can be tested readily. We illustrate our method in the case of
Einstein's equation with perfect fluid matter, thereby re-deriving, in a
systematic manner, Chandrasekhar's variational principle for radial
oscillations of spherically symmetric stars. In a subsequent paper, we will
apply our analysis to f(R) gravity, the Einstein-aether theory, and
Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added
conclusion, corrected sign convention
Glassy states and microphase separation in cross-linked homopolymer blends
The physical properties of blends of distinct homopolymers, cross-linked
beyond the gelation point, are addressed via a Landau approach involving a pair
of coupled order-parameter fields: one describing vulcanisation, the other
describing local phase separation. Thermal concentration fluctuations, present
at the time of cross-linking, are frozen in by cross-linking, and the structure
of the resulting glassy fluctuations is analysed at the Gaussian level in
various regimes, determined by the relative values of certain physical
length-scales. The enhancement, due to gelation, of the stability of the blend
with respect to demixing is also analysed. Beyond the corresponding stability
limit, gelation prevents complete demixing, replacing it by microphase
separation, which occurs up to a length-scale set by the rigidity of the
network, as a simple variational scheme reveals.Comment: 7 pages, 6 figure
Gravity-induced vacuum dominance
It has been widely believed that, except in very extreme situations, the
influence of gravity on quantum fields should amount to just small,
sub-dominant contributions. This view seemed to be endorsed by the seminal
results obtained over the last decades in the context of renormalization of
quantum fields in curved spacetimes. Here, however, we argue that this belief
is false by showing that there exist well-behaved spacetime evolutions where
the vacuum energy density of free quantum fields is forced, by the very same
background spacetime, to become dominant over any classical energy-density
component. This semiclassical gravity effect finds its roots in the infrared
behavior of fields on curved spacetimes. By estimating the time scale for the
vacuum energy density to become dominant, and therefore for backreaction on the
background spacetime to become important, we argue that this vacuum dominance
may bear unexpected astrophysical and cosmological implications.Comment: To appear in Phys. Rev. Lett
When Do Measures on the Space of Connections Support the Triad Operators of Loop Quantum Gravity?
In this work we investigate the question, under what conditions Hilbert
spaces that are induced by measures on the space of generalized connections
carry a representation of certain non-Abelian analogues of the electric flux.
We give the problem a precise mathematical formulation and start its
investigation. For the technically simple case of U(1) as gauge group, we
establish a number of "no-go theorems" asserting that for certain classes of
measures, the flux operators can not be represented on the corresponding
Hilbert spaces.
The flux-observables we consider play an important role in loop quantum
gravity since they can be defined without recourse to a background geometry,
and they might also be of interest in the general context of quantization of
non-Abelian gauge theories.Comment: LaTeX, 21 pages, 5 figures; v3: some typos and formulations
corrected, some clarifications added, bibliography updated; article is now
identical to published versio
Exploring the bulk of tidal charged micro-black holes
We study the bulk corresponding to tidal charged brane-world black holes. We
employ a propagating algorithm which makes use of the three-dimensional
multipole expansion and analytically yields the metric elements as functions of
the five-dimensional coordinates and of the ADM mass, tidal charge and brane
tension. Since the projected brane equations cannot determine how the charge
depends on the mass, our main purpose is to select the combinations of these
parameters for which black holes of microscopic size possess a regular bulk.
Our results could in particular be relevant for a better understanding of
TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos
corrected, no change in conclusion
New thought experiment to test the generalized second law of thermodynamics
We propose an extension of the original thought experiment proposed by
Geroch, which sparked much of the actual debate and interest on black hole
thermodynamics, and show that the generalized second law of thermodynamics is
in compliance with it.Comment: 4 pages (revtex), 3 figure
- …