3,451 research outputs found

    Gain and Loss in Quantum Cascade Lasers

    Full text link
    We report gain calculations for a quantum cascade laser using a fully self-consistent quantum mechanical approach based on the theory of nonequilibrium Green functions. Both the absolute value of the gain as well as the spectral position at threshold are in excellent agreement with experimental findings for T=77 K. The gain strongly decreases with temperature.Comment: 7 pages, 3 figures directly include

    Theoretical analysis of spectral gain in a THz quantum cascade laser: prospects for gain at 1 THz

    Full text link
    In a recent Letter [Appl. Phys. Lett. 82, 1015 (2003)], Williams et al. reported the development of a terahertz quantum cascade laser operating at 3.4 THz or 14.2 meV. We have calculated and analyzed the gain spectra of the quantum cascade structure described in their work, and in addition to gain at the reported lasing energy of ~= 14 meV, we have discovered substantial gain at a much lower energy of around 5 meV or just over 1 THz. This suggests an avenue for the development of a terahertz laser at this lower energy, or of a two-color terahertz laser.Comment: in press APL, tentative publication date 29 Sep 200

    Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures

    Full text link
    The transport and gain properties of quantum cascade (QC) structures are investigated using a nonequilibrium Green's function (NGF) theory which includes quantum effects beyond a Boltzmann transport description. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation. With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these structures. We define two contributions to the current, one contribution driven by the scattering-free part of the Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamiltonian. In addition, by considering the linear response of the stationary state of the structure to an applied optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200

    Gain in quantum cascade lasers and superlattices: A quantum transport theory

    Full text link
    Gain in current-driven semiconductor heterostructure devices is calculated within the theory of nonequilibrium Green functions. In order to treat the nonequilibrium distribution self-consistently the full two-time structure of the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The results are independent of the choice of the electromagnetic field if the variation of the self-energy is taken into account. Excellent quantitative agreement is obtained with the experimental gain spectrum of a quantum cascade laser. Calculations for semiconductor superlattices show that the simple 2-time miniband transport model gives reliable results for large miniband widths at room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review

    Simulation of Transport and Gain in Quantum Cascade Lasers

    Full text link
    Quantum cascade lasers can be modeled within a hierarchy of different approaches: Standard rate equations for the electron densities in the levels, semiclassical Boltzmann equation for the microscopic distribution functions, and quantum kinetics including the coherent evolution between the states. Here we present a quantum transport approach based on nonequilibrium Green functions. This allows for quantitative simulations of the transport and optical gain of the device. The division of the current density in two terms shows that semiclassical transitions are likely to dominate the transport for the prototype device of Sirtori et al. but not for a recent THz-laser with only a few layers per period. The many particle effects are extremely dependent on the design of the heterostructure, and for the case considered here, inclusion of electron-electron interaction at the Hartree Fock level, provides a sizable change in absorption but imparts only a minor shift of the gain peak.Comment: 12 pages, 5 figures included, to appear in in "Advances in Solid State Physics", ed. by B. Kramer (Springer 2003

    Self-Consistent Theory of the Gain Linewidth for Quantum Cascade Lasers

    Full text link
    The linewidth in intersubband transitions can be significantly reduced below the sum of the lifetime broadening for the involved states, if the scattering environment is similar for both states. This is studied within a nonequilibrium Green function approach here. We find that the effect is of particular relevance for a recent, relatively low doped, THz quantum cascade laser.Comment: 3 pages, figures include

    Probing confined phonon modes by transport through a nanowire double quantum dot

    Full text link
    Strong radial confinement in semiconductor nanowires leads to modified electronic and phononic energy spectra. We analyze the current response to the interplay between quantum confinement effects of the electron and phonon systems in a gate-defined double quantum dot in a semiconductor nanowire. We show that current spectroscopy of inelastic transitions between the two quantum dots can be used as an experimental probe of the confined phonon environment. The resulting discrete peak structure in the measurements is explained by theoretical modeling of the confined phonon mode spectrum, where the piezoelectric coupling is of crucial importance.Comment: 4 pages, 4 figures; final versio

    High incidence of Angina pectoris in patients treated with 5-fluorouracil - A planned surveillance study with 102 patients

    Get PDF
    Objective: Angina pectoris, arrhythmic sudden death and myocardial infarction, all these cardiac events have occasionally been reported during 5-fluorouracil (5-FU) chemotherapy. Underlying mechanisms leading to these events are unknown; damage to the myocytes or vasospasms have been discussed. Methods: 102 consecutive and unselected patients were monitored with 12-lead ECG, echocardiography and radionuclide ventriculography prior to the first cycle of 5-FU chemotherapy and 3 months from baseline. Results: 19% of the patients developed reversible symptoms of angina pectoris during treatment which lasted up to 12 h after cessation of the infusion. Most of the 19 patients showed corresponding ECG changes. 6 out of the 19 patients with severe angina pectoris had subsequent coronary angiography. In none of these patients the coronary angiography showed coronary artery disease, but it showed low ventricular function (ejection fraction <50%) in 2 patients. The ejection fraction did not increase overtime. Arrhythmias were screened for with Holter monitoring during 5-FU chemotherapy. The frequency of bradycardia and ventricular extrasystoles increased significantly (p < 0.05) during treatment compared to arrhythmias in Holter monitoring 3 months later. Furthermore the Qtc time in the ECG 3 months later was significantly prolonged (p < 0.05) compared to baseline values. Conclusions:The incidence of angina pectoris in patients during 5-FU treatment seems higher than previously suspected. As myocardial ischemia can be fatal, attentiveness to these symptoms and immediate treatment are crucial. Copyright (C) 2003 S. Karger AG, Basel

    Broadening the Focus: Women\u27s Voices in the New Journalism

    Get PDF
    The New Journalism Movement chronicled a decade of social turbulence in America by breaking the rules of traditional journalism and embracing narrative elements in the writing and publication of literary nonfiction. The magazine publishing industry was controlled by men, and the history of this transitional time in journalism has been chronicled by men, neglecting to recognize the significant contributions of women working in their midst. This study shines a light on the historical narrative that defines our understanding of the significance and key contributors to the New Journalism Movement of the late 1960s and early 1970s. To better understand the way social change was defined by the writing of New Journalists, a more inclusive history of those who contributed is essential. This study provides a narrative analysis of representative magazine writing by Joan Didion, Gail Sheehy, and Gloria Steinem to recognize their contributions and to illustrate how gender influenced the style, content and perspective of the New Journalism Movement
    • …
    corecore