22,837 research outputs found
Form Factors Calculated on the Light-Front
A consistent treatment of decay is given on the
light-front. The to transition form factors are calculated in the
entire physical range of momentum transfer for the first time. The
valence-quark contribution is obtained using relativistic light-front wave
functions. Higher quark-antiquark Fock-state of the -meson bound state is
represented effectively by the configuration, and its effect
is calculated in the chiral perturbation theory. Wave function renormalization
is taken into account consistently. The contribution dominates
near the zero-recoil point ( GeV), and decreases rapidly as
the recoil momentum increases. We find that the calculated form factor
follows approximately a dipole -dependence in the entire range
of momentum transfer.Comment: Revtex, 19 pages, 9 figure
Cutout reinforcements for shear loaded laminate and sandwich composite panels
This paper presents the numerical and experimental studies of shear loaded
laminated and sandwich carbon/epoxy composite panels with cutouts and
reinforcements aiming at reducing the cutout stress concentration and increasing
the buckling stability of the panels. The effect of different cutout sizes and
the design and materials of cutout reinforcements on the stress and buckling
behaviour of the panels are evaluated. For the sandwich panels with a range of
cutout size and a constant weight, an optimal ratio of the core to the face
thickness has been studied for the maximum buckling stability. The finite
element method and an analytical method are employed to perform parametric
studies. In both constant stress and constant displacement shear loading
conditions, the results are in very good agreement with those obtained from
experiment for selected cutout reinforcement cases. Conclusions are drawn on the
cutout reinforcement design and improvement of stress concentration and buckling
behaviour of shear loaded laminated and sandwich composite panels with cutouts
Light pseudoscalar eta and H->eta eta decay in the simplest little Higgs mode
The SU(3) simplest little Higgs model in its original framework without the
so-called mu term inevitably involves a massless pseudoscalar boson eta, which
is problematic for b-physics and cosmological axion limit. With the mu term
introduced by hand, the eta boson acquires mass m_eta ~ mu, which can be
lighter than half the Higgs boson mass in a large portion of the parameter
space. In addition, the introduced mu term generates sizable coupling of
H-eta-eta. The Higgs boson can dominantly decay into a pair of eta's especially
when mH below the WW threshold. Another new decay channel of H->Z+eta can be
dominant or compatible with H -> WW for mH above the Z+eta threshold. We show
that the LEP bound on the Higgs boson mass is loosened to some extent due to
this new H->eta eta decay channel as well as the reduced coupling of H-Z-Z. The
Higgs boson mass bound falls to about 110 GeV for f=3-4 TeV. Since the eta
boson decays mainly into a bb pair, H-> eta eta -> 4b and H-> Z eta -> Z bb
open up other interesting search channels in the pursuit of the Higgs boson in
the future experiments. We discuss on these issues.Comment: major modification considering the simplest little Higgs model with
the mu ter
Detection of Optical Synchrotron Emission from the Radio Jet of 3C279
We report the detection of optical and ultraviolet emission from the
kiloparsec scale jet of the well-known quasar 3C~279. A bright knot, discovered
in archival V and U band {\it Hubble Space Telescope} Faint Object Camera
images, is coincident with a peak in the radio jet \sim0.6\arcsec from the
nucleus. The detection was also confirmed in Wide Field Planetary Camera-2
images. Archival Very Large Array and MERLIN radio data are also analyzed which
help to show that the high-energy optical/UV continuum, and spectrum, are
consistent with a synchrotron origin from the same population of relativistic
electrons responsible for the radio emission.Comment: 6 pages, 3 figs. accepted for publication in ApJL with minor
revision
Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)
A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity
- …