5 research outputs found

    Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon

    Get PDF
    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by FermiFermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from November 2007 to January 2013, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10×1010^{\circ}\times 10^{\circ}, finding a source extension σext\sigma_{ext}= 1^{\circ}.8±\pm0^{\circ}.5. The observed differential energy spectrum is dN/dE=(2.5±0.4)×1011(E/1TeV)2.6±0.3dN/dE =(2.5\pm0.4) \times 10^{-11}(E/1 TeV)^{-2.6\pm0.3} photons cm2^{-2} s1^{-1} TeV1^{-1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by FermiFermi-LAT, and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with Supernova Remnants indicates that the particle acceleration inside a superbubble is similar to that in a SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    SEARCH FOR GeV GAMMA-RAY BURSTS WITH THE ARGO-YBJ DETECTOR: SUMMARY OF EIGHT YEARS OF OBSERVATIONS

    Get PDF
    The search for gamma-ray burst (GRB) emission in the energy range of 1-100 GeV in coincidence with the satellite detection has been carried out using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) experiment. The high-altitude location (4300 m a.s.l.), the large active surface (~6700 m2 of Resistive Plate Chambers), the wide field of view (~2 sr, limited only by the atmospheric absorption), and the high duty cycle (>86%) make the ARGO-YBJ experiment particularly suitable to detect short and unexpected events like GRBs. With the scaler mode technique, i.e., counting all the particles hitting the detector with no measurement of the primary energy and arrival direction, the minimum threshold of ~1 GeV can be reached, overlapping the direct measurements carried out by satellites. During the experiment lifetime from 2004 December 17 to 2013 February 7, a total of 206 GRBs occurring within the ARGO-YBJ field of view (zenith angle θ ≤ 45°) have been analyzed. This is the largest sample of GRBs investigated with a ground-based detector. Two light curve models have been assumed and since in both cases no significant excess has been found, the corresponding fluence upper limits in the 1-100 GeV energy region have been derived, with values as low as 10–5 erg cm–2. The analysis of a subset of 24 GRBs with known redshift has been used to constrain the fluence extrapolation to the GeV region together with possible cutoffs under different assumptions on the spectrum

    Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    Get PDF
    As one of the brightest active blazars in both X-ray and very high energy γ\gamma-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for γ\gamma-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest γ\gamma-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 σ\sigma is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ\gamma-ray flux above 1 TeV by a factor of 6.6±\pm2.2 from its steady emission. In particular, the γ\gamma-ray flux above 8 TeV is detected with a significance better than 4 σ\sigma. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of γ\gamma-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and γ\gamma-rays are also investigated.Comment: have been accepted for publication at Ap

    Evidence of a geomagnetic effect on extensive air showers detected with the ARGO-YBJ experiment

    No full text
    The geomagnetic field causes not only the east-west effect on primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched. Thus, both the density of the secondaries near the shower axis and the trigger efficiency of detector arrays decrease. The effect depends on the direction of the showers, thus, introducing a modulation in the measured azimuthal distribution. The azimuthal distribution of the events collected by the ARGO-YBJ detector is deeply investigated for different zenith angles in light of this effect
    corecore