1,838 research outputs found
Evolution of a beam dynamics model for the transport lines in a proton therapy facility
Despite the fact that the first-order beam dynamics models allow an
approximated evaluation of the beam properties, their contribution is essential
during the conceptual design of an accelerator or beamline. However, during the
commissioning some of their limitations appear in the comparison against
measurements. The extension of the linear model to higher order effects is,
therefore, demanded. In this paper, the effects of particle-matter interaction
have been included in the model of the transport lines in the proton therapy
facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the
performance of the facility, a more precise model was required and has been
developed with the multi-particle open source beam dynamics code called OPAL
(Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo
simulations of Coulomb scattering and energy loss are performed seamless with
the particle tracking. Beside the linear optics, the influence of the passive
elements (e.g. degrader, collimators, scattering foils and air gaps) on the
beam emittance and energy spread can be analysed in the new model. This allows
for a significantly improved precision in the prediction of beam transmission
and beam properties. The accuracy of the OPAL model has been confirmed by
numerous measurements.Comment: 17 pages, 19 figure
Identification of the Mass Donor Star's Spectrum in SS 433
We present spectroscopy of the microquasar SS 433 obtained near primary
eclipse and disk precessional phase Psi = 0.0, when the accretion disk is
expected to be most ``face-on''. The likelihood of observing the spectrum of
the mass donor is maximized at this combination of orbital and precessional
phases since the donor is in the foreground and above the extended disk
believed to be present in the system. The spectra were obtained over four
different runs centered on these special phases. The blue spectra show clear
evidence of absorption features consistent with a classification of A3-7 I. The
behavior of the observed lines indicates an origin in the mass donor. The
observed radial velocity variations are in anti-phase to the disk, the
absorption lines strengthen at mid-eclipse when the donor star is expected to
contribute its maximum percentage of the total flux, and the line widths are
consistent with lines created in an A supergiant photosphere. We discuss and
cast doubt on the possibility that these lines represent a shell spectrum
rather than the mass donor itself. We re-evaluate the mass ratio of the system
and derive masses of 10.9 +/- 3.1 Msun and 2.9 +/- 0.7 Msun for the mass donor
and compact object plus disk, respectively. We suggest that the compact object
is a low mass black hole.
In addition, we review the behavior of the observed emission lines from both
the disk/wind and high velocity jets.Comment: submitted to ApJ, 24 pages, 7 figure
Population and Coherence Dynamics in Light Harvesting Complex II (LH2)
The electronic excitation population and coherence dynamics in the
chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring
from purple bacteria (Rhodopseudomonas acidophila) have been studied
theoretically at both physiological and cryogenic temperatures. Similar to the
well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation
population and coherence in the site basis are observed in LH2 by using a
scaled hierarchical equation of motion (HEOM) approach. However, this
oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs)
at cryogenic temperature. Both environment and high temperature are found to
enhance the propagation speed of the exciton wave packet yet they shorten the
coherence time and suppress the oscillation amplitude of coherence and the
population. Our calculations show that a long-lived coherence between
chromophore electronic excited states can exist in such a noisy biological
environment.Comment: 21 pages, 9 figure
Coarsening of Sand Ripples in Mass Transfer Models with Extinction
Coarsening of sand ripples is studied in a one-dimensional stochastic model,
where neighboring ripples exchange mass with algebraic rates, , and ripples of zero mass are removed from the system. For ripples vanish through rare fluctuations and the average ripples mass grows
as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as
or depending on the symmetry of the mass transfer, and
asymptotically the system is characterized by a product measure. The stationary
ripple mass distribution is obtained exactly. For ripple evolution
is linearly unstable, and the noise in the dynamics is irrelevant. For the problem is solved on the mean field level, but the mean-field theory
does not adequately describe the full behavior of the coarsening. In
particular, it fails to account for the numerically observed universality with
respect to the initial ripple size distribution. The results are not restricted
to sand ripple evolution since the model can be mapped to zero range processes,
urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.
Vanishing Twist near Focus-Focus Points
We show that near a focus-focus point in a Liouville integrable Hamiltonian
system with two degrees of freedom lines of locally constant rotation number in
the image of the energy-momentum map are spirals determined by the eigenvalue
of the equilibrium. From this representation of the rotation number we derive
that the twist condition for the isoenergetic KAM condition vanishes on a curve
in the image of the energy-momentum map that is transversal to the line of
constant energy. In contrast to this we also show that the frequency map is
non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page
A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport
We have extended our supercomputer-enabled Monte Carlo simulations of hopping
transport in completely disordered 2D conductors to the case of substantial
electron-electron Coulomb interaction. Such interaction may not only suppress
the average value of hopping current, but also affect its fluctuations rather
substantially. In particular, the spectral density of current
fluctuations exhibits, at sufficiently low frequencies, a -like increase
which approximately follows the Hooge scaling, even at vanishing temperature.
At higher , there is a crossover to a broad range of frequencies in which
is nearly constant, hence allowing characterization of the current
noise by the effective Fano factor F\equiv S_I(f)/2e \left. For
sufficiently large conductor samples and low temperatures, the Fano factor is
suppressed below the Schottky value (F=1), scaling with the length of the
conductor as . The exponent is significantly
affected by the Coulomb interaction effects, changing from when such effects are negligible to virtually unity when they are
substantial. The scaling parameter , interpreted as the average
percolation cluster length along the electric field direction, scales as when Coulomb interaction effects are negligible
and when such effects are substantial, in
good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference
Sub-electron Charge Relaxation via 2D Hopping Conductors
We have extended Monte Carlo simulations of hopping transport in completely
disordered 2D conductors to the process of external charge relaxation. In this
situation, a conductor of area shunts an external capacitor
with initial charge . At low temperatures, the charge relaxation process
stops at some "residual" charge value corresponding to the effective threshold
of the Coulomb blockade of hopping. We have calculated the r.m.s value
of the residual charge for a statistical ensemble of capacitor-shunting
conductors with random distribution of localized sites in space and energy and
random , as a function of macroscopic parameters of the system. Rather
unexpectedly, has turned out to depend only on some parameter
combination: for negligible Coulomb interaction
and for substantial interaction. (Here
is the seed density of localized states, while is the
dielectric constant.) For sufficiently large conductors, both functions
follow the power law , but with different
exponents: for negligible and
for significant Coulomb interaction. We have been able to derive this law
analytically for the former (most practical) case, and also explain the scaling
(but not the exact value of the exponent) for the latter case. In conclusion,
we discuss possible applications of the sub-electron charge transfer for
"grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating
references, the discussion has been changed and expande
Charged pion form factor between =0.60 and 2.45 GeV. I. Measurements of the cross section for the H() reaction
Cross sections for the reaction H() were measured in Hall
C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF
high-intensity, continous electron beam in order to determine the charged pion
form factor. Data were taken for central four-momentum transfers ranging from
=0.60 to 2.45 GeV at an invariant mass of the virtual photon-nucleon
system of =1.95 and 2.22 GeV. The measured cross sections were separated
into the four structure functions , , , and
. The various parts of the experimental setup and the analysis
steps are described in detail, including the calibrations and systematic
studies, which were needed to obtain high precision results. The different
types of systematic uncertainties are also discussed. The results for the
separated cross sections as a function of the Mandelstam variable at the
different values of are presented. Some global features of the data are
discussed, and the data are compared with the results of some model
calculations for the reaction H().Comment: 26 pages, 23 figure
- …