8 research outputs found

    Rationalization and optimization of waste management and treatment in modern cruise ships

    Get PDF
    Here we report over possible optimizations onboard cruise ships in the management of glass, paper and cellulosic waste, ranging from simple rationalization of the materials' use (for glass and paper) to the recovery of some of the energy embedded in paper and other cellulosic waste. This latter option is investigated considering two possibilities: i) the recovery of thermal energy from incinerator's flue gas by means of an absorption plant, ii) the production of syngas to be directly fed to the ship engines. For each option, we calculated the achievable benefits in terms of reduced fuel consumption, avoided CO2 emissions and cost savings (evaluated on the basis of the avoided fuel consumption). Finally, on the basis of the previously calculated benefits, we defined three different scenarios, each including the rationalization of glass and paper waste management, topped by different combinations of thermal energy recovery/syngas production. We then evaluated these scenarios in terms of environmental and economic benefits. This analysis showed that even trivial approaches, as a simple rationalization of paper consumption, can allow consistent advantages over existing waste management policies; moreover, syngas generators for treating cellulosic waste emerged as very effective tools for lowering the environmental impact of modern cruise ships. Joining these two strategies allows notable savings in terms of fuel, CO2 emissions and ship operational costs, and could represent a path for sizably reducing the environmental footprint of cruise ships

    Characterization of Microbialites and Microbial Mats of the Laguna Negra Hypersaline Lake (Puna of Catamarca, Argentina)

    Get PDF
    Microbial carbonates provide an invaluable tool to understand biogeochemical processes in aqueous systems, especially in lacustrine and marine environments. Lakes are strongly sensitive to climatically driven environmental changes, and microbialites have recently been shown to provide a record of these changes. Unraveling physicochemical and microbiological controls on carbonates textures and geochemistry is necessary to correctly interpret these signals and the microbial biosphere record within sedimentary carbonates. The Laguna Negra is a high-altitude hypersaline Andean lake (Puna of Catamarca, Argentina), where abundant carbonate precipitation takes place and makes this system an interesting example that preserves a spectrum of carbonate fabrics reflecting complex physical, chemical, and biological interactions. The extreme environmental conditions (high UV radiation, elevated salinity, and temperature extremes) make the Laguna Negra a good analogue to some Precambrian microbialites (e.g., Tumbiana Fm., Archean, Australia). In addition, the discovery of ancient evaporating playa-lake systems on Mars’ surface (e.g., ShalbatanaVallis, Noachian, Mars) highlights the potential of Laguna Negra to provide insight into biosignature preservation in similar environments, in both terrestrial and extraterrestrial settings, given that microbial processes in the Laguna Negra can be studied with remarkable detail.Fil: Boidi, Flavia Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Mlewski, Estela Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gomez, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gérard, Emmanuelle. Centre National de la Recherche Scientifique; Franci

    Complete Characterization of Stratified Ecosystems of the Salar de Llamara (Atacama Desert)

    No full text
    Salar de Llamara is situated in the north of the Atacama Desert, which is the driest desert and one of the most irradiated places on Earth. Besides, its subterranean hypersaline waters contain a high content of arsenic, among other compounds such as heavy metals that are poisonous to life in the concentrations present. Despite these extreme conditions, diverse microbial communities flourish in gypsum stratified ecosystems (microbial mats and evaporitic domes).Here, we reviewed all the analysis carried out in these communities, involving taxonomic and functional studies by culture-independent techniques, analysis of the physicochemical parameters of the water and its relation with the microbial ecosystems, together with pigments, mineralogy, and the microscopic view.Regarding taxonomy, the major points analyzed were: (1) the taxonomic trends at phylum level showed that Proteobacteria and Bacteroidetes were the major components of these communities. (2) A low proportion of sequences associated with the phylum Cyanobacteria were detected in all the studied samples. (3) The increased proportion of sequences that could not be affiliated with any taxonomic group that is deposited in the databases. (4) The large amount of rare phyla represented by candidate phyla, such as OD1, OP1, OD8, Hyd24-12, and NKB19.The functional analysis, carried out in these gypsum evaporite systems, revealed that there was only a minor presence of oxygenic photosynthesizers in the community, and anoxygenic photosynthesis appears as an alternative for primary production. Since the Calvin?Benson cycle was scant, the low abundance of oxygenic photosynthesizers was also related to unusual carbon fixation pathways.Regarding physicochemical parameters of the water, the most interesting results were: (1) a huge amount of arsenic; (2) high salinity; (3) low nutrients and high levels of some ions, such as sodium, sulfate, and calcium. The low dissolved oxygen in most of the set points was low, which was consistent with the low proportion of oxygenic photosynthesizers in all the samples studied.Regarding the mineralogy, gypsum mainly compounded all the evaporitic domes, and the microbial mats present halite as the main mineral component.Fil: Rasuk, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Contreras Leiva, Manuel. Centro de Ecología Aplicada; ChileFil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin
    corecore