511 research outputs found

    Correlation between crystalline order and vitrification in colloidal monolayers

    Get PDF
    We investigate experimentally the relationship between local structure and dynamical arrest in a quasi-2d colloidal model system which approximates hard discs. We introduce polydispersity to the system to suppress crystallisation. Upon compression, the increase in structural relaxation time is accompanied by the emergence of local hexagonal symmetry. Examining the dynamical heterogeneity of the system, we identify three types of motion : "zero-dimensional" corresponding to beta-relaxation, "one-dimensional" or stringlike motion and "two-dimensional" motion. The dynamic heterogeneity is correlated with the local order, that is to say locally hexagonal regions are more likely to be dynamically slow. However we find that lengthscales corresponding to dynamic heterogeneity and local structure do not appear to scale together approaching the glass transition.Comment: 13 papes, to appear in J. Phys.: Condens. Matte

    An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities

    Get PDF
    Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches

    Folates in Trypanosoma brucei: achievements and opportunities

    Get PDF
    Trypanosoma brucei is the agent of human African trypanosomiasis (HAT), a neglected disease that threatens the lives of 65 million people in sub-Saharan Africa every year. Unfortunately, available therapies are unsatisfactory, due primarily to safety issues and development of drug resistance. Over the last decades significant effort has been made in the discovery of new potential anti-HAT agents, with help from the World Health Organization (WHO) and private\u2013public partnerships such as the Drugs for Neglected Diseases Initiative (DNDi). Whereas antifolates have been a valuable source of drugs against bacterial infections and malaria, compounds effective against T. brucei have not yet been identified. Considering the relatively simple folate metabolic pathway in T. brucei, along with results obtained in this research field so far, we believe that further investigations might lead to effective chemotherapeutic agents. Herein we present a selection of the more promising results obtained so far in this field, underlining the opportunities that could lead to successful therapeutic approaches in the future

    Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate : an Experimental and Theoretical Study

    Get PDF
    The total charge density of PYRAC, a polar (Pca21) organic racemate with Z\u2032 = 2, was derived from high-resolution single-crystal X-ray diffraction data at T = 100(2) K and periodic DFT calculations. The PYRAC asymmetric unit consists of a hydrogen-bonded pair of conformationally different enantiomers, A and Bi, where the subscript \u201ci\u201d indicates a reversed absolute configuration. The lattice stability was compared with that of centrosymmetric possibly competing structures, with the aim of understanding why a noncentrosymmetric lattice framework is obtained from a racemic mixture. The likelihood of specific intermolecular recognition processes among different conformers of PYRAC in the very first stages of nucleation was investigated by DFT simulations in vacuo. Two competing, equivalent interconversion pseudorotatory paths between the most stable A and the least stable B conformers were found. It results that molecules spend most of their time ( 4853%) in the A conformation, whereas the B one is far less populated ( 487%). Therefore, centrosymmetric AAi adducts are formed very frequently in the reaction liquor, whereas the BBi ones are rare. Nevertheless, AAi pairs produce crystal forms with cohesive energies and densities significantly less favorable than those estimated for the noncentrosymmetric heterochiral ABi ones. Therefore, preference for Z\u2032 = 2 in conjunction with noncentrosymmetric point and space groups results from the thermodynamic control of the crystallization process. The capability of forming extended hydrogen bond chains throughout the lattice appears to be a prerequisite to bind together the fundamental ABi repeating units

    Identification of a novel spliced variant of the SYT gene expressed in normal tissues and in synovial sarcoma

    Get PDF
    Synovial sarcoma (SS) is cytogenetically characterized by the translocation t(X;18)(p11.2-q11.2) generating a fusion between the SYT gene on chromosome 18 and one member of the SSX family gene (SSX1; SSX2; SSX4) on chromosome X. Here, we report for the first time that 2 forms of SYT mRNA are present in both normal tissues and SSs. By amplifying the full-length SYT cDNA of two SSs, we detected 2 bands, here designated N-SYT and I-SYT. The latter, previously undescribed, contains an in-frame insertion of 93 bp. Its sequencing revealed a 100% homology with the mouse SYT gene. These two SYT forms were present, although in different amounts, in all human normal tissues examined, including kidney, stomach, lung, colon, liver and synovia. Coexistence of N-SYT and I-SYT (both fused with SSX) was detected in a series of 59 SSs (35 monophasic and 24 biphasic) and in a SS cell line. A preliminary analysis of the differential expression levels of N-SYT and I-SYT in SSs revealed that the latter was consistently overexpressed, suggesting a role in SS pathogenesis. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Machine learning prediction models for mitral valve repairability and mitral regurgitation recurrence in patients undergoing surgical mitral valve repair

    Get PDF
    Background: Mitral valve regurgitation (MR) is the most common valvular heart disease and current variables associated with MR recurrence are still controversial. We aim to develop a machine learning-based prognostic model to predict causes of mitral valve (MV) repair failure and MR recurrence. Methods: 1000 patients who underwent MV repair at our institution between 2008 and 2018 were enrolled. Patients were followed longitudinally for up to three years. Clinical and echocardiographic data were included in the analysis. Endpoints were MV repair surgical failure with consequent MV replacement or moderate/severe MR (>2+) recurrence at one-month and mod-erate/severe MR recurrence after three years. Results: 817 patients (DS1) had an echocardiographic examination at one-month while 295 (DS2) also had one at three years. Data were randomly divided into training (DS1: n = 654; DS2: n = 206) and validation (DS1: n = 164; DS2 n = 89) cohorts. For intra-operative or early MV repair failure assessment, the best area under the curve (AUC) was 0.75 and the complexity of mitral valve prolapse was the main predictor. In predicting moderate/severe recurrent MR at three years, the best AUC was 0.92 and residual MR at six months was the most important predictor. Conclusions: Machine learning algorithms may improve prognosis after MV repair procedure, thus improving indications for correct candidate selection for MV surgical repair

    An enzymatic flow-based preparative route to vidarabine

    Get PDF
    The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase fromAeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides
    • …
    corecore