242 research outputs found

    Time-Resolved Studies of a Rolled-Up Semiconductor Microtube Laser

    Full text link
    We report on lasing in rolled-up microtube resonators. Time-resolved studies on these semiconductor lasers containing GaAs quantum wells as optical gain material reveal particularly fast turn-on-times and short pulse emissions above the threshold. We observe a strong red-shift of the laser mode during the pulse emission which is compared to the time evolution of the charge-carrier density calculated by rate equations

    Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators

    Full text link
    We report on microtube ring resonators with quantum wells embedded as an optically active material. Optical modes are observed over a broad energy range. Their properties strongly depend on the exact geometry of the microtube along its axis. In particular we observe (i) preferential emission of light on the inside edge of the microtube and (ii) confinement of light also in direction of the tube axis by an axially varying geometry which is explained in an expanded waveguide model.Comment: 5 pages, 4 figure

    Nanocrystal Aerogels with Coupled or Decoupled Building Blocks

    Get PDF
    The influence of interparticle contact in nanoparticle-based aerogelnetwork structures is investigated by selectively connecting or isolating the buildingblocks inside of the network, thereby coupling and decoupling them in regards to theiroptical and electronic properties. This is achieved by tuning the synthesis sequence andexchanging the point of shell growth and the point of particle assembly, leading to twodistinctly different structures as examined by electron microscopy. By thoroughexamination of the resulting optical properties of the generated structures, the clearcorrelation between nanoscopic/microscopic structure and macroscopic optical proper-ties is demonstrated. Temperature-dependent measurements and effective massapproximation calculations support ourfindings

    Corneal Replication Is an Interferon Response-Independent Bottleneck for Virulence of Herpes Simplex Virus 1 in the Absence of Virion Host Shutoff

    Get PDF
    Herpes simplex viruses lacking the virion host shutoff function (Δvhs) are avirulent and hypersensitive to type I and type II interferon (IFN). In this study, we demonstrate that even in the absence of IFN responses in AG129 (IFN-αÎČÎłR−/−) mice, Δvhs remains highly attenuated via corneal infection but is fully virulent via intracranial infection. The data demonstrate that the interferon-independent inherent replication defect of Δvhs has a significant impact upon peripheral replication and neuroinvasion

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Underrepresented Populations in Parkinson's Genetics Research: Current Landscape and Future Directions

    Get PDF
    BACKGROUND: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine. OBJECTIVE: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations. METHODS: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information. RESULTS: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs. CONCLUSION: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future. © 2022 International Parkinson and Movement Disorder Society

    Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Get PDF
    <p>Abstract</p> <p>The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The &#8220;etch suppression&#8221; area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.</p
    • 

    corecore