1,630 research outputs found

    Black Hole Evaporation Entails an Objective Passage of Time

    Get PDF
    Time's apparent passage has long been debated by philosophers, with no decisive argument for or against its objective existence. In this paper we show that introducing the issue of determinism gives the debate a new, empirical twist. We prove that any theory that states that the basic laws of physics are time-symmetric must be strictly deterministic. It is only determinism that enables time reversal, whether theoretical or experimental, of anyentropy-increasing process. A contradiction therefore arises between Hawking's argument that physical law is time-symmetric and his controversial claim that black-hole evaporation introduces a fundamental unpredictability into the physical world. The latter claim forcibly entails an intrinsic time-arrow independent of boundary conditions. A simulation of a simple system under time reversal shows how an intrinsic time arrow re-emerges, destroying the time reversal, when even the slightest failure of determinism occurs. This proof is then extended to the classical behavior of black holes. We conclude with pointing out the affinity between time's arrow and its apparent passage.Comment: 15 pages, 3 figure

    Time-Reversed EPR and the Choice of Histories in Quantum Mechanics

    Full text link
    When a single photon is split by a beam splitter, its two `halves' can entangle two distant atoms into an EPR pair. We discuss a time-reversed analogue of this experiment where two distant sources cooperate so as to emit a single photon. The two `half photons,' having interacted with two atoms, can entangle these atoms into an EPR pair once they are detected as a single photon. Entanglement occurs by creating indistinguishabilility between the two mutually exclusive histories of the photon. This indistinguishabilility can be created either at the end of the two histories (by `erasing' the single photon's path) or at their beginning (by `erasing' the two atoms' positions).Comment: 6 pages, 5 figures. Presented at the Solvay Conference in Physics, November 2001, Delphi, Greece. To be published in Quantum Computers and Computing, 2002 and in the Proceedings of XXII Solvay Conference in Physics. New York: World Scientific, 200
    corecore