60 research outputs found

    How to increase earthquake and home fire preparedness: the fix-it intervention

    Get PDF
    Published, evaluated community intervention studies concerning natural hazard preparedness are rare. Most lack a rigorous methodology, thereby hampering the development of evidence-based interventions. This paper describes the rationale and methodology of a cross-cultural, longitudinal intervention study on earthquake and home fire preparedness, termed fix-it. The aim is to evaluate whether and how the intervention brings about behaviour change in the targeted communities in two coastal cities with high seismic risk: Seattle, USA and Izmir, Turkey. Participants are adult residents of these cities. The intervention group attends a 6-h workshop, which focuses on securing items in the household. The control group does not attend the workshop. All participants complete baseline and post-intervention, as well as 3- and 12-month follow-up assessments. The primary outcome measure is an observational measure of nine preparedness items for earthquake and fire in participants’ homes. This is evaluated alongside participants’ self-reports concerning their preparedness levels. Secondary outcomes are changes in levels of self-efficacy, perceived outcome, trust, corruption, empowerment, anxiety and social cohesion. Results from the first of the studies, conducted in Seattle in September 2015, indicate that while the fix-it intervention is effective, in the longer term, multi-hazard preparedness is increased by the mere act of going into people’s homes to observe their preparedness levels along with assessing self-reported preparedness and sociopsychological orientation towards natural hazards. This protocol and study aim to augment the empirical literature on natural hazard preparedness, informing national and international policy on delivery of evidence-based community interventions to promote multi-hazard preparedness in households

    Seismic Response of Underground Lifeline Systems

    Get PDF
    This paper presents and discusses the recent developments related to seismic performance and assessment of buried pipelines. The experience from the performance of pipelines during last earthquakes provided invaluable information and lead to new developments in the analysis and technologies. Especially, the pipeline performance during Canterbury earthquake sequence in New Zealand is taken as a case study here. The data collected for the earthquake sequence are unprecedented in size and detail, involving ground motion recordings from scores of seismograph stations, high resolution light detection and ranging (LiDAR) measurements of vertical and lateral movements after each event, and detailed repair records for thousands of km of underground pipelines with coordinates for the location of each repair. One of the important learnings from the recent earthquakes is that some earthquake resistant design and technologies proved to be working. This provides a motivation to increase international exchange and cooperation on earthquake resistant technologies. Another observation is that preventive maintenance is important to reduce the pipeline damage risk from seismic and other hazards. To increase the applicability and sustainability, seismic improvements should be incorporated into the pipe replacement and asset management programs as part of the preventive maintenance concept. However, it is also important to put in the most proper pipeline from the start as replacing or retrofitting the pipelines later requires substantial investment. In this respect, seismic considerations should be taken into account properly in the design phase

    Earthquake-Induced Structural and Nonstructural Damage in Hospitals

    Get PDF
    This article was published in the journal, Earthquake Spectra [© (2011) Earthquake Engineering Research Institute]. This article may be downloaded for personal use only. Any other use requires prior permission of the Earthquake Engineering Research Institute.The Sichuan (China) and L’Aquila (Italy) earthquakes have again highlighted the question of our preparedness for natural hazards. Within a few seconds, an earthquake can demolish many buildings, destroy infrastructure, and kill and injure thousands of people. In order to reduce the impact of earthquakes on human life and to prepare hospitals to cope with future disasters, this paper discusses earthquake-related damage to healthcare facilities. It investigates the damage to 34 healthcare facilities in seven countries caused by nine earthquakes between 1994 and 2004, in order to determine common and specific issues. The investigation shows that structural and architectural damage tended to be different and specific to the situation, while utility supplies and equipment damage were similar in most cases and some common trends emerged

    Uniendo ingeniería y ecología: la protección costera basada en ecosistemas

    Get PDF
    En un contexto de crecientes impactos y riesgos socio-económicos en las costas del planeta, la protección costera basada en ecosistemas surge como un nuevo paradigma que une los principios de protección, sostenibilidad y resiliencia, a la vez que proporciona múltiples beneficios. Este artículo ofrece una perspectiva sobre qué son y cómo se pueden utilizar las defensas naturales en el diseño, planificación y gestión de costas. La política pública muestra un creciente interés por su implementación general y el cuerpo de conocimiento y experiencia alrededor de la también denominada infraestructura ?verde? es creciente, pero aún existen importantes barreras que salvar. Una de ellas es estandarizar su diseño en términos ingenieriles, así como reconocer los aspectos que los diferencian respecto a enfoques tradicionales. La adaptación climática y la reducción de riesgos son áreas en las que su utilización puede ser más significativa, debido a la variedad de servicios que ofrecen. Tanto desde el punto de vista técnico como económico, existen argumentos sólidos para evitar la degradación de los ecosistemas, avanzando su restauración y conservación, como también desde la perspectiva de la defensa de las costas.In a context of increasing socio-economic impacts and risks in the coastal areas of the planet, coastal protection based on ecosystem features becomes a new paradigm that combines the principles of conservation, sustainability and resilience, while providing multiple benefits. This paper provides a perspective on what these are and how they can be used in the design, planning and management of the coastal zones. Policy-makers are calling for further uptake and implementation across the board and the body of knowledge and experience around the socalled ?green? infrastructure is growing, but there are still major barriers for a widespread uptake. One of them is to standardize designs in engineering terms, recognizing the different characteristics compared to traditional engineering solutions. Climate adaptation and risk reduction are areas where its use may be more significant, for the variety of services they offer. Both technically and economically, there are strong arguments to prevent degradation of ecosystems and to advance in their restoration and conservation, as well as from a coastal defense perspective

    Assessing Vulnerability to Floods of the Built Environment-Integrating Urban Networks and Buildings

    Full text link
    corecore