103 research outputs found
Bound States for a Magnetic Impurity in a Superconductor
We discuss a solvable model describing an Anderson like impurity in a BCS
superconductor. The model can be mapped onto an Ising field theory in a
boundary magnetic field, with the Ising fermions being the quasi-particles of
the Bogoliubov transformation in BCS theory. The reflection S-matrix exhibits
Andreev scattering, and the existence of bound states of the quasi-particles
with the impurity lying inside the superconducting gap.Comment: 7 pages, Plain Te
Nonvanishing Local Moment in Triplet Superconductors
The Kondo effect in a -wave superconductor is studied by
applying the Wilson's numerical renormalization group method. In this type of
superconductor with a full energy gap like a s-wave one, the ground state is
always a spin doublet, while a local spin is shrunk by the Kondo effect. The
calculated magnetic susceptibility indicates that the spin of the ground state
is generated by the orbital effect of the -wave Cooper
pairs. The effect of spin polarization of the triplet superconductor is also
discussed.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp
Gap States in Dilute Magnetic Alloy Superconductors
We study states in the superconducting gap induced by magnetic impurities
using self-consistent quantum Monte Carlo with maximum entropy and formally
exact analytic continuation methods. The magnetic impurity susceptibility has
different characteristics for T_{0} \alt T_{c0} and T_{0} \agt T_{c0}
(: Kondo temperature, : superconducting transition temperature)
due to the crossover between a doublet and a singlet ground state. We
systematically study the location and the weight of the gap states and the gap
parameter as a function of and the concentration of the
impurities.Comment: 4 pages in ReVTeX including 4 encapsulated Postscript figure
Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions
We study a two-band Hubbard model in the limit of infinite dimensions, using
a combination of analytical methods and Monte-Carlo techniques. The normal
state is found to display various metal to insulators transitions as a function
of doping and interaction strength. We derive self-consistent equations for the
local Green's functions in the presence of superconducting long-range order,
and extend previous algorithms to this case. We present direct numerical
evidence that in a specific range of parameter space, the normal state is
unstable against a superconducting state characterized by a strongly frequency
dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex,
LPTENS Preprint 93/1
Quantum Interference between Impurities: Creating Novel Many-Body States in s-wave Superconductors
We demonstrate that quantum interference of electronic waves that are
scattered by multiple magnetic impurities in an s-wave superconductor gives
rise to novel bound states. We predict that by varying the inter-impurity
distance or the relative angle between the impurity spins, the states' quantum
numbers, as well as their distinct frequency and spatial dependencies, can be
altered. Finally, we show that the superconductor can be driven through
multiple local crossovers in which its spin polarization, , changes
between and 1.Comment: 4 pages, 4 figure
Spin and orbital effects of Cooper pairs coupled to a single magnetic impurity
The Kondo effect strongly depends on spin and orbital degrees of freedom of
unconventional superconductivity. We focus on the Kondo effect in the -wave and -wave superconductors to compare the
magnetic properties of the spin-triplet and spin-singlet Cooper pairs. The
difference appears when both of the paired electrons couple to a local spin
directly. For the -wave, the ground state is always a spin doublet
for a local spin, and it is always a spin singlet for
. The latter is due to uniaxial spin anisotropy of the triplet
Cooper pair. For the -wave, the interchange of ground
states occurs, which resembles a competition between the Kondo effect and the
superconducting energy gap in s-wave superconductors. Thus the internal degrees
of freedom of Cooper pairs give a variety to the Kondo effect.Comment: 7 pages, 6 figures, RevTex, to be published in Phys. Rev.
Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction
We propose a minimal model for the Josephson current through a quantum dot in
a Kondo regime. We start with the model that consists of an Anderson impurity
connected to two superconducting (SC) leads with the gaps
, where for the lead at left and right. We show that, when one of the SC gaps is
much larger than the others , the starting model can
be mapped exactly onto the single-channel model, which consists of the right
lead of and the Anderson impurity with an extra onsite SC gap of
. Here and are
defined with respect to the starting model, and is the level width
due to the coupling with the left lead. Based on this simplified model, we
study the ground-state properties for the asymmetric gap, , using the numerical renormalization group (NRG) method. The
results show that the phase difference of the SC gaps , which induces the Josephson current, disturbs the screening of the
local moment to destabilize the singlet ground state typical of the Kondo
system. It can also drive the quantum phase transition to a magnetic doublet
ground state, and at the critical point the Josephson current shows a
discontinuous change. The asymmetry of the two SC gaps causes a re-entrant
magnetic phase, in which the in-gap bound state lies close to the Fermi level.Comment: 23 pages, 13 figures, typos are correcte
Numerical Renormalization Group Approach to a Quantum Dot Coupled to Normal and Superconducting Leads
We study transport through a quantum dot coupled to normal and
superconducting leads using the numerical renormalization group method. We show
that the low-energy properties of the system are described by the local Fermi
liquid theory despite of the superconducting correlations penetrated into the
dot due to a proximity effect. We calculate the linear conductance due to the
Andreev reflection in the presence of the Coulomb interaction. It is
demonstrated that the maximum structure appearing in the conductance clearly
characterizes a crossover between two distinct spin-singlet ground states, i.e.
the superconducting singlet state and the Kondo singlet state. It is further
elucidated that the gate-voltage dependence of the conductance shows different
behavior in the superconducting singlet region from that in the Kondo singlet
region.Comment: 10 pages, 6 figures; a typo in eq. (B.5) corrected, which does not
affect any other results of the pape
Numerical Renormalization Group Study of Kondo Effect in Unconventional Superconductors
Orbital degrees of freedom of a Cooper pair play an important role in the
unconventional superconductivity. To elucidate the orbital effect in the Kondo
problem, we investigated a single magnetic impurity coupled to Cooper pairs
with a () symmetry using the numerical
renormalization group method. It is found that the ground state is always a
spin doublet. The analytical solution for the strong coupling limit explicitly
shows that the orbital dynamics of the Cooper pair generates the spin 1/2 of
the ground state.Comment: 4 pages, 2 figures, JPSJ.sty, to be published in J. Phys. Soc. Jpn.
70 (2001) No. 1
Diagrammatic method for investigating universal behavior of impurity systems
The universal behavior of magnetic impurities in a metal is proved with the
help of skeleton diagrams. The energy scales are derived from the structure of
the skeleton diagrams. A minimal set of skeleton diagrams is sorted out that
scales exactly. For example, the non-crossing approximation for the Anderson
impurity model can describe the crossover phenomenon. The universal
Wilson-number is calculated within the non-crossing approximation. The method
allows for an assessment of various approximations for impurity Hamiltonians.Comment: 21 pages, 3 figure
- …