6 research outputs found

    Dynamics of end-linked star polymer structures

    Full text link
    In this work we focus on the dynamics of macromolecular networks formed by end-linking identical polymer stars. The resulting macromolecular network can then be viewed as consisting of spacers which connect branching points (the cores of the stars). We succeed in analyzing exactly, in the framework of the generalized Gaussian model, the eigenvalue spectrum of such networks. As applications we focus on several topologies, such as regular networks and dendrimers; furthermore, we compare the results to those found for regular hyperbranched structures. In so doing, we also consider situations in which the beads of the cores differ from the beads of the spacers. The analytical procedure which we use involves an exact real-space renormalization, which allows to relate the star-network to a (much simpler) network, in which each star is reduced to its core. It turns out that the eigenvalue spectrum of the star-polymer structure consists of two parts: One follows in terms of polynomial equations from the relaxation spectrum of the corresponding renormalized structure, while the second part involves the motion of the spacer chains themselves. Finally, we show exemplarily the situation for copolymeric dendrimers, calculate their spectra, and from them their storage and the loss moduli.Comment: 15 pages, 11 eps-figures include

    Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies

    No full text

    Architecture of Polymers: Topological Structure–Properties Relationship

    No full text
    corecore