1,372 research outputs found

    Programmable Spectrometry -- Per-pixel Classification of Materials using Learned Spectral Filters

    Full text link
    Many materials have distinct spectral profiles. This facilitates estimation of the material composition of a scene at each pixel by first acquiring its hyperspectral image, and subsequently filtering it using a bank of spectral profiles. This process is inherently wasteful since only a set of linear projections of the acquired measurements contribute to the classification task. We propose a novel programmable camera that is capable of producing images of a scene with an arbitrary spectral filter. We use this camera to optically implement the spectral filtering of the scene's hyperspectral image with the bank of spectral profiles needed to perform per-pixel material classification. This provides gains both in terms of acquisition speed --- since only the relevant measurements are acquired --- and in signal-to-noise ratio --- since we invariably avoid narrowband filters that are light inefficient. Given training data, we use a range of classical and modern techniques including SVMs and neural networks to identify the bank of spectral profiles that facilitate material classification. We verify the method in simulations on standard datasets as well as real data using a lab prototype of the camera

    A study of the history and development of visual aids used in extension work in the United States and suggested application of the findings for the development of a visual aid section at the Agricultural College and Research Institute, Coimbatore, Madras State, India

    Get PDF
    The primary purposes of this study were: 1) to gather historical information about the development of visual aids in extension work in the United States: 2) to review the generally accepted theories of visual communication, and 3) to study and summarize the research done on the effectiveness of various individual visual aids. A secondary purpose was to utilize these findings as a basis for formulating a working plan for the development of a visual aids section at the Agricultural College and Research Institute, at Coimbatore, Madras State, India. By such study and adaptation, it is hoped that extension teaching may be made richer and more meaningful both to extension workers as well as farmers

    Coarse Bifurcation Studies of Bubble Flow Microscopic Simulations

    Full text link
    The parametric behavior of regular periodic arrays of rising bubbles is investigated with the aid of 2-dimensional BGK Lattice-Boltzmann (LB) simulators. The Recursive Projection Method is implemented and coupled to the LB simulators, accelerating their convergence towards what we term coarse steady states. Efficient stability/bifurcation analysis is performed by computing the leading eigenvalues/eigenvectors of the coarse time stepper. Our approach constitutes the basis for system-level analysis of processes modeled through microscopic simulations.Comment: 4 pages, 3 figure

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems
    • …
    corecore