619 research outputs found
Nonresidential Fathers Parenting Their Children Residing in Shelters: A Phenomenological Study
This phenomenological qualitative study explored the parenting role of nonresidential fathers of children living in shelters. Special attention was paid to the perceived contributions of these fathers to the overall health and general well-being of their children residing in shelters. Often separations of nonresidential fathers from their children in shelters decreased their contributions to their children\u27s health and well-being. Increased knowledge of these parental roles and contributions can enhance programs and policies to support these fathers in improving the health and well-being of their children. In-depth semistructured interviews were conducted with 6 demographically diverse nonresidential fathers living in Philadelphia. The health-belief model, in conjunction with the revised health-belief model, was used as a theoretical framework for this study. The research questions were designed to explore nonresidential fathers\u27 parenting roles, perceptions of their contributions, and the facilitators of and barriers to their parenting while their children resided in shelters. An inductive approach to data analysis informed study findings of nonresidential fathers\u27 active participation and engagement in their children\u27s lives, including involvement in their healthcare and health promotion. Perceived facilitators to their parenting role included internal and external motivators, whereas perceived challenges and barriers to their parenting role were externally based. Finally, study findings showed these fathers to be present and making significant contributions to the improved health and overall well-being of their children while they resided in homeless shelters
Real-time optical manipulation of cardiac conduction in intact hearts
Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an allâoptical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wideâfield mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in freeârun mode with submillisecond temporal resolution or in a closedâloop fashion: a tailored hardware and software platform allowed realâtime intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Realâtime intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for realâtime resynchronization therapy and cardiac defibrillation. Furthermore, the closedâloop approach was applied to simulate a reâentrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proofâofâconcept that a realâtime optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart
Photoresponsive Polymer-Based Biomimetic Contractile Units as Building Block for Artificial Muscles
Loss of muscular mechanical function occurs in several diseases affecting millions of people worldwide, including heart failure, stroke, and neuromuscular disorders. To date, no medical or surgical treatments can restore muscular contractility, and the development of artificial muscles is of extreme interest. Mimicking biological muscles, which are optimized systems displaying quick reaction times, is not trivial; only few examples are reported, mainly focused on the use of biomimetic smart materials. Among them, liquid crystalline elastomers (LCEs) can be biocompatible, show contraction parameters comparable to those of native striated muscles, and are able to effectively potentiate cardiac contraction in vitro. To go further and develop in vivo implantable devices, the integration of the stimulation system with the LCE material represents an essential step. Here, a light-stimulated biomimetic contractile unit (BCU), combining ultra-thin photoresponsive LCE films and mini-LED (mLED) matrixes is described. BCU performance (in terms of extent and kinetics of contractile force and shortening) can be fine-tuned by modulating both mLED light power and spatial stimulation patterns, allowing to reproduce mechanical dynamics of native muscles. These results pave the way for the development of novel LCE-based contraction assist devices for cardiac, skeletal, or smooth muscle support by assembling multiple BCUs
Tuber borchii fruit body: 2-dimensional profile and protein identification
The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identifie
Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting
- âŠ