136 research outputs found

    Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus

    Get PDF
    Pyrethroid resistance in Anopheles funestus is threatening malaria control in Africa. Elucidation of underlying resistance mechanisms is crucial to improve the success of future control programs. A positional cloning approach was used to identify genes conferring resistance in the uncharacterised rp2 quantitative trait locus (QTL) previously detected in this vector using F6 advanced intercross lines (AIL). A 113 kb BAC clone spanning rp2 was identified and sequenced revealing a cluster of 15 P450 genes and one salivary protein gene (SG7-2). Contrary to A. gambiae, AfCYP6M1 is triplicated in A. funestus, while AgCYP6Z2 orthologue is absent. Five hundred and sixty-five new single nucleotide polymorphisms (SNPs)were identified for genetic mapping from rp2 P450s and other genes revealing high genetic polymorphisms with one SNP every 36 bp. A significant genotype/phenotype association was detected for rp2 P450s but not for a cluster of cuticular protein genes previously associated with resistance in A. gambiae. QTL mapping using F6 AIL confirms the rp2 QTL with an increase logarithm of odds score of 5. Multiplex gene expression profiling of 15 P450s and other genes around rp2 followed by individual validation using qRT–PCR indicated a significant overexpression in the resistant FUMOZ-R strain of the P450s AfCYP6Z1, AfCYP6Z3, AfCYP6M7 and the glutathione-s-transferase GSTe2 with respective fold change of 11.2,6.3, 5.5 and 2.8. Polymorphisms analysis of AfCYP6Z1 and AfCYP6Z3 identified amino acid changes potentially associated with resistance further indicating that these genes are controlling the pyrethroid resistance explained by the rp2 QTL. The characterisation of this rp2 QTL significantly improves our understanding of resistance mechanisms in A. funestus

    High Level of Pyrethroid Resistance in an Anopheles funestus Population of the Chokwe District in Mozambique

    Get PDF
    Background Although Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations. Methodology/Principal Findings 3,000 F1 adults were obtained through larval rearing. WHO susceptibility assays indicated a very high resistance to pyrethroids with no mortality recorded after 1h30min exposure and less than 50% mortality at 3h30min. Resistance to the carbamate, bendiocarb was also noted, with 70% mortality after 1h exposure. In contrast, no DDT resistance was observed, indicating that no kdr-type resistance was involved. The sequencing of the acetylcholinesterase gene indicated the absence of the G119S and F455W mutations associated with carbamate and organophosphate resistance. This could explain the absence of malathion resistance in this population. Both biochemical assays and quantitative PCR implicated up-regulated P450 genes in pyrethroid resistance, with GSTs playing a secondary role. The carbamate resistance observed in this population is probably conferred by the observed altered AChE with esterases also involved. Conclusion/Significance The high level of pyrethroid resistance in this population despite the cessation of pyrethroid use for IRS in 1999 is a serious concern for resistance management strategies such as rotational use of insecticides. As DDT has now been re-introduced for IRS, susceptibility to DDT needs to be closely monitored to prevent the appearance and spread of resistance to this insecticide

    Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    Get PDF
    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised

    Gene amplification and microsatellite polymorphism underlie a recent insect host shift

    Get PDF
    Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation

    Mapping a Quantitative Trait Locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus

    Get PDF
    BACKGROUND: Pyrethroid resistance in Anopheles funestus populations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL) associated with pyrethroid resistance in the FUMOZ-R strain of An. funestus from Mozambique. RESULTS: By genotyping 349 F(2 )individuals from 11 independent families, a single major QTL, rp1, at the telomeric end of chromosome 2R was identified. The rp1 QTL appears to present a major effect since it accounts for more than 60% of the variance in susceptibility to permethrin. This QTL has a strong additive genetic effect with respect to susceptibility. Candidate genes associated with pyrethroid resistance in other species were physically mapped to An. funestus polytene chromosomes. This showed that rp1 is genetically linked to a cluster of CYP6 cytochrome P450 genes located on division 9 of chromosome 2R and confirmed earlier reports that pyrethroid resistance in this strain is not associated with target site mutations (knockdown resistance). CONCLUSION: We hypothesize that one or more of these CYP6 P450s clustered on chromosome 2R confers pyrethroid resistance in the FUMOZ-R strain of An. funestus

    Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae

    Get PDF
    The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding of the fitness cost of resistance on mosquito populations, including their mating competiveness. To fill this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from mating swarms in Burkina Faso. This multiple insecticide resistant population exhibited high 1014F kdrR allele frequencies (460%) and RDLR (480%) in contrast to the Ace-1R allele (o6%). Kdr heterozygote males were more likely to mate than homozygote resistant (OR=2.36; Po0.001), suggesting a negative impact of kdr on An. coluzzii mating ability. Interestingly, heterozygote males were also more competitive than homozygote susceptible (OR=3.26; P=0.006), suggesting a heterozygote advantage effect. Similarly, heterozygote RDLR/RDLS were also more likely to mate than homozygote-resistant males (OR=2.58; P=0.007). Furthermore, an additive mating disadvantage was detected in male homozygotes for both kdr/RDL-resistant alleles. In contrast, no fitness difference was observed for the Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic resistance did not significantly alter the mating competitiveness of male An. coluzzii mosquitoes. Indeed, no significant difference of expression levels was observed for the main metabolic resistance genes, suggesting that metabolic resistance has a limited impact on male mating competiveness. In addition, specific gene classes/GO terms associated with mating process were detected including sensory perception and peroxidase activity. The detrimental impact of insecticide resistance on mating competiveness observed here suggests that resistance management strategies such as insecticide rotation could help reverse the resistance, if implemented early

    Pyrethroid Resistance in an Anopheles funestus Population from Uganda

    Get PDF
    Background: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary haracterisation of the putative resistance mechanisms involved. Methodology/Principal Findings: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. Conclusion: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa

    A De Novo Expression Profiling of Anopheles funestus, Malaria Vector in Africa, Using 454 Pyrosequencing

    Get PDF
    BACKGROUND: Anopheles funestus is one of the major malaria vectors in Africa and yet there are few genomic tools available for this species compared to An. gambiae. To start to close this knowledge gap, we sequenced the An. funestus transcriptome using cDNA libraries developed from a pyrethroid resistant laboratory strain and a pyrethroid susceptible field strain from Mali. RESULTS: Using a pool of life stages (pupae, larvae, adults: females and males) for each strain, 454 sequencing generated 375,619 reads (average length of 182 bp). De novo assembly generated 18,103 contigs with average length of 253 bp. The average depth of coverage of these contigs was 8.3. In total 20.8% of all reads were novel when compared to reference databases. The sequencing of the field strain generated 204,758 reads compared to 170,861 from the insecticide resistant laboratory strain. The contigs most differentially represented in the resistant strain belong to the P450 gene family and cuticular genes which correlates with previous studies implicating both of these gene families in pyrethroid resistance. qPCR carried out on six contigs indicates that these ESTs could be suitable for gene expression studies such as microarray. 31,000 sites were estimated to contain Single Nucleotide Polymorphisms (SNPs) and analysis of SNPs from 20 contigs suggested that most of these SNPs are likely to be true SNPs. Gene conservation analysis confirmed the close phylogenetic relationship between An. funestus and An. gambiae. CONCLUSION: This study represents a significant advance for the genetics and genomics of An. funestus since it provides an extensive set of both Expressed Sequence Tags (ESTs) and SNPs which can be readily adopted for the design of new genomic tools such as microarray or SNP platforms

    High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms

    Get PDF
    Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area
    corecore