2,640 research outputs found
Probing Brownstein-Moffat Gravity via Numerical Simulations
In the standard scenario of the Newtonian gravity, a late-type galaxy (i.e.,
a spiral galaxy) is well described by a disk and a bulge embedded in a halo
mainly composed by dark matter. In Brownstein-Moffat gravity, there is a claim
that late-type galaxy systems would not need to have halos, avoiding as a
result the dark matter problem, i.e., a modified gravity (non-Newtonian) would
account for the galactic structure with no need of dark matter. In the present
paper, we probe this claim via numerical simulations. Instead of using a
"static galaxy," where the centrifugal equilibrium is usually adopted, we probe
the Brownstein-Moffat gravity dynamically via numerical -body simulations.Comment: 33 pages and 14 figures - To appear in The Astrophysical Journa
Bimetric Gravity Theory, Varying Speed of Light and the Dimming of Supernovae
In the bimetric scalar-tensor gravitational theory there are two frames
associated with the two metrics {\hat g}_{\mu\nu} and g_{\mu\nu}, which are
linked by the gradients of a scalar field \phi. The choice of a comoving frame
for the metric {\hat g}_{\mu\nu} or g_{\mu\nu} has fundamental consequences for
local observers in either metric spacetimes, while maintaining diffeomorphism
invariance. When the metric g_{\mu\nu} is chosen to be associated with comoving
coordinates, then the speed of light varies in the frame with the metric {\hat
g}_{\mu\nu}. Observers in this frame see the dimming of supernovae because of
the increase of the luminosity distance versus red shift, due to an increasing
speed of light in the early universe. Moreover, in this frame the scalar field
\phi describes a dark energy component in the Friedmann equation for the cosmic
scale without acceleration. If we choose {\hat g}_{\mu\nu} to be associated
with comoving coordinates, then an observer in the g_{\mu\nu} metric frame will
observe the universe to be accelerating and the supernovae will appear to be
farther away. The theory predicts that the gravitational constant G can vary in
spacetime, while the fine-structure constant \alpha=e^2/\hbar c does not vary.
The problem of cosmological horizons as viewed in the two frames is discussed.Comment: 22 pages, Latex file. No figures. Corrected typos. Added reference.
Further references added. Further corrections. To be published in Int. J.
Mod. Phys. D, 200
A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123
Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8
stars in general and WR123 in particular? A dedicated spectroscopic campaign
targets the ten-hour period previously found in the high-precision photometric
data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a
series of high signal-to-noise, mid-resolution spectra from several sites in
the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star
with occasional broadband (Johnson V) photometry. The acquired spectroscopy
allowed a detailed study of spectral variability on timescales from \sim 5
minutes to months. Results. We find that all observed spectral lines of a given
chemical element tend to show similar variations and that there is a good
correlation between the lines of different elements, without any significant
time delays, save the strong absorption components of the Hei lines, which tend
to vary differently from the emission parts. We find a single sustained
periodicity, P \sim 9.8 h, which is likely related to the relatively stable
pulsations found in MOST photometry obtained one year later. In addition,
seemingly stochastic, large-amplitude variations are also seen in all spectral
lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A
Research Note
Properties of WNh stars in the Small Magellanic Cloud: evidence for homogeneous evolution
We derive the physical properties of three WNh stars in the SMC to constrain
stellar evolution beyond the main sequence at low metallicity and to
investigate the metallicity dependence of the clumping properties of massive
stars. We compute atmosphere models to derive the stellar and wind properties
of the three WNh targets. A FUV/UV/optical/near-infrared analysis gives access
to temperatures, luminosities, mass loss rates, terminal velocities and stellar
abundances. All stars still have a large hydrogen mass fraction in their
atmosphere, and show clear signs of CNO processing in their surface abundances.
One of the targets can be accounted for by normal stellar evolution. It is a
star with initial mass around 40-50 Msun in, or close to, the core He burning
phase. The other two objects must follow a peculiar evolution, governed by fast
rotation. In particular, one object is likely evolving homogeneously due to its
position blue-ward of the main sequence and its high H mass fraction. The
clumping factor of one star is found to be 0.15+/-0.05. This is comparable to
values found for Galactic Wolf-Rayet stars, indicating that within the
uncertainties, the clumping factor does not seem to depend on metallicity.Comment: 16 pages. A&A accepte
Gravitational solution to the Pioneer 10/11 anomaly
A fully relativistic modified gravitational theory including a fifth force
skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The
theory allows for a variation with distance scales of the gravitational
constant G, the fifth force skew symmetric field coupling strength omega and
the mass of the skew symmetric field mu=1/lambda. A fit to the available
anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a
phenomenological representation of the "running" constants and values of the
associated parameters are shown to exist that are consistent with fifth force
experimental bounds. The fit to the acceleration data is consistent with all
current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4)
and (12) and a third table including our predictions for the anomalous
perihelion advance of the planets was adde
Qualitative Analysis of Universes with Varying Alpha
Assuming a Friedmann universe which evolves with a power-law scale factor,
, we analyse the phase space of the system of equations that describes
a time-varying fine structure 'constant', , in the
Bekenstein-Sandvik-Barrow-Magueijo generalisation of general relativity. We
have classified all the possible behaviours of in ever-expanding
universes with different and find new exact solutions for . We
find the attractors points in the phase space for all . In general, will be a non-decreasing function of time that increases logarithmically in
time during a period when the expansion is dust dominated (), but
becomes constant when . This includes the case of negative-curvature
domination (). also tends rapidly to a constant when the
expansion scale factor increases exponentially. A general set of conditions is
established for to become asymptotically constant at late times in an
expanding universe.Comment: 26 pages, 6 figure
Can the Copernican principle be tested by cosmic neutrino background?
The Copernican principle, stating that we do not occupy any special place in
our universe, is usually taken for granted in modern cosmology. However recent
observational data of supernova indicate that we may live in the under-dense
center of our universe, which makes the Copernican principle challenged. It
thus becomes urgent and important to test the Copernican principle via
cosmological observations. Taking into account that unlike the cosmic photons,
the cosmic neutrinos of different energies come from the different places to us
along the different worldlines, we here propose cosmic neutrino background as a
test of the Copernican principle. It is shown that from the theoretical
perspective cosmic neutrino background can allow one to determine whether the
Copernican principle is valid or not, but to implement such an observation the
larger neutrino detectors are called for.Comment: JHEP style, 10 pages, 4 figures, version to appear in JCA
Wind ionization structure of the short-period eclipsing LMC Wolf-Rayet binary BAT99-129: preliminary results
BAT99-129 is a rare, short-period eclipsing Wolf-Rayet binary in the Large
Magellanic Cloud. We present here medium-resolution NTT/EMMI spectra that allow
us to disentangle the spectra of the two components and find the orbital
parameters of the binary. We also present VLT/FORS1 spectra of this binary
taken during the secondary eclipse, i.e. when the companion star passes in
front of the Wolf-Rayet star. With these data we are able to extract, for the
first time in absolute units for a WR+O binary, the sizes of the line emitting
regions.Comment: 6 pages, 5 figures, to appear in proc. of "Close Binaries in the 21st
Century: New Opportunities and Challenges", 2005 - Corrected Figure
- âŠ