172 research outputs found
Decoupling of a Neutron Interferometer from Temperature Gradients
Neutron interferometry enables precision measurements that are typically
operated within elaborate, multi-layered facilities which provide substantial
shielding from environmental noise. These facilities are necessary to maintain
the coherence requirements in a perfect crystal neutron interferometer which is
extremely sensitive to local environmental conditions such as temperature
gradients across the interferometer, external vibrations, and acoustic waves.
The ease of operation and breadth of applications of perfect crystal neutron
interferometry would greatly benefit from a mode of operation which relaxes
these stringent isolation requirements. Here, the INDEX Collaboration and
National Institute of Standards and Technology demonstrates the functionality
of a neutron interferometer in vacuum and characterize the use of a compact
vacuum chamber enclosure as a means to isolate the interferometer from spatial
temperature gradients and time-dependent temperature fluctuations. The vacuum
chamber is found to have no depreciable effect on the performance of the
interferometer (contrast) while improving system stability, thereby showing
that it is feasible to replace large temperature isolation and control systems
with a compact vacuum enclosure for perfect crystal neutron interferometry
Measurement of Receptor-Activated Phosphoinositide Turnover in Rat Brain: Nonequivalence of Inositol Phosphate and CDP-Diacylglycerol Formation
Two methods for the measurement of receptor-activated phosphoinositide turnover were evaluated for their degree of correspondence in slices of rat brain; they involved the Li + -dependent accumulations of either [ 3 H]-inositol-labeled inositol phosphates or [ 3 H]cytidine-labeled CDP-diacylglycerol. In contrast to the expectation that the ratio of these two responses would remain approximately constant, varying degrees of correspondence were obtained. The two extremes are exemplified by carbachol, which elicited large increases in both inositol phosphate and CDP-diacylglycerol labeling, and endothelin, which gave a robust inositol phosphate response with little or no accumulation of 3 H-CDP-diacylglycerol. No instance of the presence of the latter response in the absence of 3 H-inositol phosphate accumulation was observed. Measurement of 3 H-CDP-diacylglycerol accumulation thus may add additional insight into the regulation of phosphoinositide turnover and the complex actions of Li + .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66135/1/j.1471-4159.1993.tb03258.x.pd
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Uridine Metabolism in the Goldfish Retina During Optic Nerve Regeneration: Whole Retina Studies
Accumulation of radioactivity from [ 3 H]uridine in incubations of whole goldfish retinas is increased in the ipsilateral retina during a period of regeneration that follows unilateral optic nerve crush. Brief incubations to investigate the nature of enhanced labeling of the acid-soluble fraction showed a peak uptake 4 days following crush, with a gradual decrease to control levels by 21 days following crush. That nucleoside uptake may not mediate the effect is supported by the observation that the rate of uptake of 5′-deoxyadenosine, a nonmetabolizable nucleoside analog, is the same in post-crush (PC) and normal (N) retinal incubations. Following brief incubations of PC and N retinas with [ 3 H]uridine, there is enhanced labeling in PC retinas relative to N retinas of recovered UMP, UDP, UTP, and uridine nucleotide sugars, whereas recovery of labeled uridine itself is slightly decreased. The results suggest that the increased accumulation of radioactivity in PC retinas following incubation with uridine reflects an increase in the activities of retinal uridine kinase and uridine nucleotide kinases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65630/1/j.1471-4159.1981.tb01713.x.pd
Uridine Metabolism in the Goldfish Retina During Optic Nerve Regeneration: Cell-Free Preparations
The activities of uridine kinase (EC 2.7.1.48), uridine monophosphate (UMP) kinase (EC 2.7.1.3.14), and uridine diphosphate (UDP) kinase (EC 2.7.4.6) were measured in retinal high-speed supernatant fractions following unilateral optic nerve crush in the goldfish. The enzyme activities followed a similar time course, with initial increases 2-3 days following nerve crush, peak activity at 4 days, and a gradual return to basal levels by day 21. The magnitude of the stimulation on day 4 was about 35% in each case. Activities of two enzymes of intermediary metabolism, pyruvate kinase (EC 2.7.1.40) and lactic dehydrogenase (EC 1.1.1.27), were not altered, indicating that the coordinate increases in nucleoside and nucleotide kinase activities were specific responses to the nerve injury. The increased labeling could not be explained by altered phosphohydrolytic activities. The nature of the enhancement was further studied in UDP kinase, the most active of the kinases examined. Neither low-molecular-weight components nor substrate availability could account for the observed increase in UDP kinase in the 4 day post-crush retinas. The K m , for UDP was unaltered, and a mixing experiment did not support the possibility that stimulatory or inhibitory factors played a role. The enhancement of UDP kinase activity was blocked by injection of actinomycin D following nerve crush. The results suggest that the observed increases in enzymes of uridine metabolism result from their increased formation following nerve crush.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65504/1/j.1471-4159.1981.tb01714.x.pd
Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pd
- …