120 research outputs found

    Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape

    Get PDF
    Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding

    Tacrolimus in pediatric renal transplantation

    Get PDF
    Tacrolimus was used as the primary immunosuppressive agent in 69 pediatric renal transplantations between December 17, 1989, and June 30, 1995. Children undergoing concomitant or prior liver and/or intestinal transplantation were excluded from analysis. The mean recipient age was 10.3±5.0 years (range, 0.7-17.5 years). Seventeen (24.6%) children were undergoing retransplantation, and six (8.7%) had a panel reactive antibody level of 40% or higher. Thirty-nine (57%) cases were with cadaveric kidneys, and 30 (43%) were with living donors. The mean donor age was 28.0±14.7 years (range, 1.0-50.0 years), and the mean cold ischemia time for the cadaveric kidneys was 27.0±9.4 hr. The antigen match was 2.7±1.2, and the mismatch was 3.1±1.2. All patients received tacrolimus and steroids, without antibody induction, and 26% received azathioprine as well. The mean follow-up was 32±20 months. One- and 4-year actuarial patient survival rates were 100% and 95%. One- and 4-year actuarial graft survival rates were 99% and 85%. The mean serum creatinine level was 1.2±0.8 mg/dl, and the calculated creatinine clearance was 82±26 ml/min/1.73 m2. The mean tacrolimus dose was 0.22±0.14 mg/kg/day, and the level was 9.5±4.8 ng/ml. The mean prednisone dose was 2.1±4.9 mg/day (0.07±0.17 mg/kg/day), and 73% of successfully transplanted children were off prednisone. Seventy-nine percent were not taking any antihypertensive medications. The mean serum cholesterol level was 158±54 mg/dl. The incidence of delayed graft function was 4.3%. The incidence of rejection was 49%, and the incidence of steroid-resistant rejection was 6%. The incidence of rejection decreased to 27% in the most recent 26 cases (January 1994 through June 1995). The incidence of new-onset diabetes was 10.1%; six of the seven affected children were able to be weaned off insulin. The incidence of cytomegalovirus disease was 13%, and that of posttransplant lymphoproliferative disorder was 10%; the incidence of posttransplant lymphoproliferative disorder in the last 40 transplants was 5% (two cases). All of the children who developed posttransplant lymphoproliferative disorder are alive and have functioning allografts. Based on this data, we believe that tacrolimus is a superior immunosuppressive agent in pediatric renal transplant patients, with excellent short- and medium-term patient and graft survival, an ability to withdraw steroids in the majority of patients, and, with more experience, a decreasing rate of rejection and vital complications

    Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat

    Get PDF
    Background and Aims The ω-gliadin storage proteins of wheat are of interest in relation to their impact on grain processing properties and their role in food allergy, particularly the ω-5 sub-group and wheat-dependent exercise-induced anaphylaxis. The ω-gliadins are also known to be responsive to nitrogen application. This study therefore compares the effects of cultivar and nitrogen availability on the synthesis and deposition of ω-gliadins in wheat grown under field conditions in the UK, including temporal and spatial analyses at the protein and transcript levels. Methods SDS–PAGE, western blotting and N-terminal amino acid sequencing were used to compare the patterns of ω-gliadin components in mature grain of six British wheat (Triticum aestivum) cultivars and their accumulation during the development of grain grown in field plots with varying nitrogen supply. Changes in gene expression during development were determined using real-time reverse transcription–PCR (RT–PCR). Spatial patterns of gene expression and protein accumulation were determined by in situ hybridization and immunofluorescence microscopy, respectively. Key Results Two patterns of ω-gliadins were identified in the six cultivars, including both monomeric ‘gliadin’ proteins and subunits present in polymeric ‘glutenin’ fractions. Increasing the level of nitrogen fertilizer in field plots resulted in increased expression of ω-gliadin transcripts and increased proportions of ω-5 gliadins. Nitrogen supply also affected the spatial patterns of ω-gliadin synthesis and deposition, which were differentially increased in the outer layers of the starchy endosperm with high levels of nitrogen. Conclusions Wheat ω-gliadins vary in amount and composition between cultivars, and in their response to nitrogen supply. Their spatial distribution is also affected by nitrogen supply, being most highly concentrated in the sub-aleurone cells of the starchy endosperm under higher nitrogen availability

    G-fibre cell wall development in willow stems during tension wood induction

    Get PDF
    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1–4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1–4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented

    Temperature dependence of surface reconstructions of Au on Pd(110)

    Full text link
    Surface reconstructions of Au film on Pd(110) substrate are studied using a local Einstein approximation to quasiharmonic theory with the Sutton-Chen interatomic potential. Temperature dependent surface free energies for different coverages and surface structures are calculated. Experimentally observed transformations from (1×1)(1\times1) to (1×2)(1 \times 2) and (1×3)(1 \times 3) structures can be explained in the framework of this model. Also conditions for Stranski-Krastanov growth mode are found to comply with experiments. The domain of validity of the model neglecting mixing entropy is analyzed.Comment: 7 pages, REVTeX two-column format, 3 postscript figures available on request from [email protected] To appear in Phys. Rev. Letter

    Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    Get PDF
    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions

    Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber

    Get PDF
    Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions
    corecore