11 research outputs found

    Targeted treatment for chronic lymphocytic leukemia

    Get PDF
    The treatment of chronic lymphocytic leukemia (CLL) has evolved over the last few decades. Recognition has increased of several key components of CLL biology currently manipulated for therapeutics. A milestone in the treatment of CLL was reached with the incorporation of immunotherapy with conventional chemotherapy. The fludarabine/cyclophosphamide/rituximab combination has demonstrated survival advantage for the first time in the treatment of CLL. Several other biological compounds are being explored with the hope of improving responses, impacting survival, and ultimately curing CLL. Important agents being tested are targeted on CLL surface molecules and their ligands, signal transduction protein and oncogenes. This review provides a brief summary of the recent advances made in preclinical and clinical investigation of selected promising therapeutic agents, which lead the target-directed therapeutic approach

    Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS

    Get PDF
    A combination of yeast genetics and protein biochemistry define how the fused in sarcoma (FUS) protein might contribute to Lou Gehrig's disease

    Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches

    Get PDF
    Mutations in the fused in sarcoma/translated in liposarcoma gene (FUS/TLS, FUS) have been identified in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). FUS is an RNA-binding protein that is normally localized in the nucleus, but is mislocalized to the cytoplasm in ALS, and comprises cytoplasmic inclusions in ALS-affected areas. However, it is still unknown whether the neurodegeneration that occurs in ALS is caused by the loss of FUS nuclear function, or by the gain of toxic function due to cytoplasmic FUS aggregation. Cabeza (Caz) is a Drosophila orthologue of human FUS. Here, we generated Drosophila models with Caz knockdown, and investigated their phenotypes. In wild-type Drosophila, Caz was strongly expressed in the central nervous system of larvae and adults. Caz did not colocalize with a presynaptic marker, suggesting that Caz physiologically functions in neuronal cell bodies and/or their axons. Fly models with neuron-specific Caz knockdown exhibited reduced climbing ability in adulthood and anatomical defects in presynaptic terminals of motoneurons in third instar larvae. Our results demonstrated that decreased expression of Drosophila Caz is sufficient to cause degeneration of motoneurons and locomotive disability in the absence of abnormal cytoplasmic Caz aggregates, suggesting that the pathogenic mechanism underlying FUS-related ALS should be ascribed more to the loss of physiological FUS functions in the nucleus than to the toxicity of cytoplasmic FUS aggregates. Since the Caz-knockdown Drosophila model we presented recapitulates key features of human ALS, it would be a suitable animal model for the screening of genes and chemicals that might modify the pathogenic processes that lead to the degeneration of motoneurons in ALS

    Experimental Investigation on the Early Age Tensile Strength of Fiber Reinforced Mortar Used in 3D Concrete Printing

    No full text
    Digital fabrication with cement-based materials requires specific attention to be paid to the rheological and mechanical material properties both in the fresh and hardened state. For the layered extrusion process, the cement-based material needs to satisfy the “printability” requirement. Generally, printable mortars exhibit brittle mechanical behaviour due to the absence of reinforcement. In order to overcome this issue, many different strategies can be implemented. Among them, the addition of short fibers in the mortar represents a first step towards the development of robust materials for 3D printing in construction. In this context, the paper focuses on the early stage tensile properties of fiber-reinforced cement-based material to be used in the layered extrusion process. The embedment of discrete fibers in a printable mix is expected to improve the mechanical behaviour but, at the same time, it implicates a loss of workability in the mix, which could lead to problems during the printing process (in terms of extrudability and pumpability of the mix). In this paper, the mechanical response under direct tensile is investigated as a function of the type/concentration of fibers as well as the mortar resting time. Furthermore, the effect of varying the amount of the superplasticizer to guarantee the printability requirement of the printable mortar is also investigated. In a quality control framework, the development of tensile fracture properties, in the considered production time frame, is fundamental to determine the printability of the mix, with reference not only to the quality of the finishing but also to the speed of the printing process

    Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis

    No full text
    The chimeric fusion oncogene early B-cell factor 1-platelet-derived growth factor receptor-β (EBF1-PDGFRB) is a recurrent lesion observed in Philadelphia-like B-acute lymphoblastic leukemia (B-ALL) and is associated with particularly poor prognosis. While it is understood that this fusion activates tyrosine kinase signaling, the mechanisms of transformation and importance of perturbation of EBF1 activity remain unknown. EBF1 is a nuclear transcription factor required for normal B-lineage specification, commitment and development. Conversely, PDGFRB is a receptor tyrosine kinase that is normally repressed in lymphocytes, yet PDGFRB remains a common fusion partner in leukemias. Here, we demonstrate that the EBF1-PDGFRB fusion results in loss of EBF1 function, multimerization and autophosphorylation of the fusion protein, activation of signal transducer and activator of transcription 5 (STAT5) signaling and gain of interleukin-7 (IL-7)-independent cell proliferation. Deregulation and loss of EBF1 function is critically dependent on the nuclear export activity of the transmembrane (TM) domain of PDGFRB. Deletion of the TM domain partially rescues EBF1 function and restores IL-7 dependence, without requiring kinase inhibition. Moreover, we demonstrate that EBF1-PDGFRB synergizes with loss of IKAROS function in a fully penetrant B-ALL in vivo. Thus, we establish that EBF1-PDGFRB is sufficient to drive leukemogenesis through TM-dependent loss of transcription factor function, increased proliferation and synergy with additional genetic insults including loss of IKAROS function.SJ Welsh, ML Churchman, M Togni, CG Mullighan and J Hagma
    corecore