22,910 research outputs found
MEA/A-1 experiment 81F01 conducted on STS-7 flight, June 1983. Containerless processing of glass forming melts
The space processing of containerless, glassforming melts on board the space shuttle flight STS-7 is investigated. Objectives include; (1) obtain quantitative evidence for the supression of heterogeneous nucleation/crystallization, (2) study melt homogenization without gravity driven convection, (3) procedural development for bubble free, high purity homogeneous melts inmicro-g, (4) comparative analysis of melts on Earth and in micro g, and (5) assess the apparatus for processing multicomponent, glass forming melts in a low gravity environment
Containerless processing of glass forming melts: D-1, MEA/A-2 experiment 81F01 conducted on STS-61A flight, October 1985
Results of experiment 81F01, which was conducted in the Material Experiment Assembly MEA/A-2 on the D-1 Spacelab Mission (STS-61A), are presented. The general plan of the experiment was to heat, melt, and quench six spherical samples of different glass forming compositions while they were levitated in a single axis acoustic levitator furnace (SAAL). In addition, two non-melting sintered alumina samples were used to check the operational characteristics of the SAAL under reduced gravity conditions. Three of the eight samples were levitated between 1250 and 1500 C before the lack of coolant created an over-temperature condition that caused the SAAL to shut down prematurely. Two of the three samples processed were calcia-gallia-silica and soda-lime-silica glass forming compositions. Evidence of a two to three times increase in the tendency for glass formation was obtained for the calcia-gallia-silica. The final glass appeared reasonably homogeneous even though it was made from hot pressed powders containing deliberate heterogeneities. A photographic record was obtained of the microgravity sample processing sequences
AAA gunnermodel based on observer theory
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories
A classification of mitigation strategies for natural hazards: implications for the understanding of interactions between mitigation strategies
The unexpectedly poor performances of complex mitigation systems in recent natural disasters demonstrate the need to reexamine mitigation system functionality, especially those combining multiple mitigation strategies. A systematic classification of mitigation strategies is presented as a basis for understanding how different types of strategy within an overall mitigation system can interfere destructively, to reduce the effectiveness of the system as a whole. We divide mitigation strategies into three classes according to the timing of the actions that they prescribe. Permanent mitigation strategies prescribe actions such as construction of tsunami barriers or land-use restrictions: they are frequently both costly and ābrittleā in that the actions work up to a design limit of hazard intensity or magnitude and then fail. Responsive mitigation strategies prescribe actions after a hazard source event has occurred, such as evacuations, that rely on capacities to detect and quantify hazard events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Anticipatory mitigation strategies prescribe use of the interpretation of precursors to hazard source events as a basis for precautionary actions, but challenges arise from uncertainties in hazard behaviour. The NE Japan tsunami mitigation system and its performance in the 2011 Tohoku disaster provide examples of interactions between mitigation strategies. We propose that the classification presented here would enable consideration of how the addition of a new strategy to a mitigation system would affect the performance of existing strategies within that system, and furthermore aid the design of integrated mitigation systems
Asymptotic Exit Location Distributions in the Stochastic Exit Problem
Consider a two-dimensional continuous-time dynamical system, with an
attracting fixed point . If the deterministic dynamics are perturbed by
white noise (random perturbations) of strength , the system state
will eventually leave the domain of attraction of . We analyse the
case when, as , the exit location on the boundary
is increasingly concentrated near a saddle point of the
deterministic dynamics. We show that the asymptotic form of the exit location
distribution on is generically non-Gaussian and asymmetric,
and classify the possible limiting distributions. A key role is played by a
parameter , equal to the ratio of the stable
and unstable eigenvalues of the linearized deterministic flow at . If
then the exit location distribution is generically asymptotic as
to a Weibull distribution with shape parameter , on the
length scale near . If it is generically
asymptotic to a distribution on the length scale, whose
moments we compute. The asymmetry of the asymptotic exit location distribution
is attributable to the generic presence of a `classically forbidden' region: a
wedge-shaped subset of with as vertex, which is reached from ,
in the limit, only via `bent' (non-smooth) fluctuational paths
that first pass through the vicinity of . We deduce from the presence of
this forbidden region that the classical Eyring formula for the
small- exponential asymptotics of the mean first exit time is
generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy
requests to [email protected] or [email protected]
Intrinsic Spin Hall Effect in the presence of Extrinsic Spin-Orbit Scattering
Intrinsic and extrinsic spin Hall effects are considered together on an equal
theoretical footing for the Rashba spin-orbit coupling in two-dimensional (2D)
electron and hole systems, using the diagrammatic method for calculating the
spin Hall conductivity. Our analytic theory for the 2D holes shows the expected
lowest-order additive result for the spin Hall conductivity. But, the 2D
electrons manifest a very surprising result, exhibiting a non-analyticity in
the Rashba coupling strength where the strictly extrinsic spin Hall
conductivity (for ) cannot be recovered from the
limit of the combined theory. The theoretical results are discussed in the
context of existing experimental results.Comment: 5 pages, 2 figure
The quenching of compressible edge states around antidots
We provide a systematic quantitative description of the edge state structure
around a quantum antidot in the integer quantum Hall regime. The calculations
for spinless electrons within the Hartree approximation reveal that the widely
used Chklovskii et al. electrostatic description greatly overestimates the
widths of the compressible strips; the difference between these approaches
diminishes as the size of the antidot increases. By including spin effects
within density functional theory in the local spin-density approximation, we
demonstrate that the exchange interaction can suppress the formation of
compressible strips and lead to a spatial separation between the spin-up and
spin-down states. As the magnetic field increases, the outermost compressible
strip, related to spin-down states starts to form. However, in striking
contrast to quantum wires, the innermost compressible strip (due to spin-up
states) never develops for antidots.Comment: submitted to Phys. Rev. Let
- ā¦