15,245 research outputs found
Closed time path approach to the Casimir energy in real media
The closed time path formalism is applied, in the framework of open quantum
systems, to study the time evolution of the expectation value of the
energy-momentum tensor of a scalar field in the presence of real materials. We
analyze quantum fluctuations in a fully non-equilibrium scenario, when the
scalar field is interacting with the polarization degrees of freedom of matter,
described as quantum Brownian particles. A generalized analysis was done for
two types of couplings between the field and the material. On the one hand, we
considered a bilinear coupling, and on the other hand, a (more realistic)
current-type coupling as in the case of the electromagnetic field interacting
with matter. We considered the high temperature limit for the field, keeping
arbitrary temperatures for each part of the volume elements of the material. We
obtained a closed form for the Hadamard propagator, which let us study the
dynamical evolution of the expectations values of the energy-momentum tensor
components from the initial time. We showed that two contributions always take
place in the transient evolution: one of these is associated to the material
and the other one is only associated to the field. Transient features were
studied and the long-time limit was derived in several cases. We proved that in
the steady situation of a field in n + 1 dimensions, the material always
contribute unless is non-dissipative. Conversely, the proper field contribution
vanishes unless the material is non-dissipative or, moreover, at least for the
1 + 1 case, if there are regions without material. We conclude that any steady
quantization scheme in 1 + 1 dimensions must consider both contributions and we
argue why these results are physically expected from a dynamical point of view,
and also could be valid for higher dimensions based on the expected continuity
between the non-dissipative and real material cases.Comment: 28 pages, no figures. Version to appear in Phys. Rev.
Phenolics, depsides and triterpenes from the chilean lichen pseudocyphellaria nudata (zahlbr.) D.J. Galloway
Indexación: ScieloThe lichen Pseudocyphellaria nudata is a species endemic to southern South América. From the lichen tallus, methyl orsellinate, 2-methoxy-3,6-dimethyl-4-hydroxybenzaldehyde, methyl-evernate, tenuiorin, hopan-6ß,22-diol and hopan-6α,76,22-triol were isolated and identified as the main lichen constituents. This is the first report of the occurrence of 2-methoxy-3,6-dimethyl-4-hydroxybenzaldehyde in lichens.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=s0717-97072008000300017&nrm=is
The Magellanic Bridge cluster NGC 796: Deep optical AO imaging reveals the stellar content and initial mass function of a massive open cluster
NGC 796 is a massive young cluster located 59 kpc from us in the diffuse
intergalactic medium of the 1/5-1/10 Magellanic Bridge, allowing to
probe variations in star formation and stellar evolution processes as a
function of metallicity in a resolved fashion, providing a link between
resolved studies of nearby solar-metallicity and unresolved distant metal-poor
clusters located in high-redshift galaxies. In this paper, we present adaptive
optics H imaging of NGC 796 (at 0.5", which is ~0.14 pc at the
cluster distance) along with optical spectroscopy of two bright members to
quantify the cluster properties. Our aim is to explore if star formation and
stellar evolution varies as a function of metallicity by comparing the
properties of NGC 796 to higher metallicity clusters. We find from isochronal
fitting of the cluster main sequence in the colour-magnitude diagram an age of
20 Myr. Based on the cluster luminosity function, we derive a
top-heavy stellar initial mass function (IMF) with a slope =
1.990.2, hinting at an metallicity and/or environmental dependence of the
IMF which may lead to a top-heavy IMF in the early Universe. Study of the
H emission line stars reveals that Classical Be stars constitute a
higher fraction of the total B-type stars when compared with similar clusters
at greater metallicity, providing some support to the chemically homogeneous
theory of stellar evolution. Overall, NGC 796 has a total estimated mass of
990 , and a core radius of 1.40.3 pc which classifies
it as a massive young open cluster, unique in the diffuse interstellar medium
of the Magellanic Bridge.Comment: Accepted for publication in the Astrophysical Journal. Contains 14
pages, 11 figures, and 3 table
A Mechanism for Cutting Carbon Nanotubes with a Scanning Tunneling Microscope
We discuss the local cutting of single-walled carbon nanotubes by a voltage
pulse to the tip of a scanning tunneling microscope. The tip voltage (~3.8 eV) is the key physical quantity in the cutting process. After
reviewing several possible physical mechanisms we conclude that the cutting
process relies on the weakening of the carbon-carbon bonds through a
combination of localized particle-hole excitations induced by inelastically
tunneling electrons and elastic deformation due to the electric field between
tip and sample. The carbon network releases part of the induced mechanical
stress by forming topological defects that act as nucleation centers for the
formation of dislocations that dynamically propagate towards bond-breaking.Comment: 7 pages, 6 postscript figures, submitted to PR
-AlN-Mg(OH) vdW Bilayer Heterostructure: Tuning the excitonic characteristics
Motivated by recent studies that reported the successful synthesis of
monolayer Mg(OH) [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525
(2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys.
Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and
optical properties of vertically stacked -AlN and Mg(OH), through
\textit{ab initio} density-functional theory (DFT), many-body quasi-particle
calculations within the GW approximation, and the Bethe-Salpeter equation
(BSE). It is obtained that the bilayer heterostructure prefers the
stacking having direct band gap at the with Type-II band
alignment in which the valance band maximum and conduction band minimum
originate from different layer. Regarding the optical properties, the imaginary
part of the dielectric function of the individual layers and hetero-bilayer are
investigated. The hetero-bilayer possesses excitonic peaks which appear only
after the construction of the hetero-bilayer. The lowest three exciton peaks
are detailedly analyzed by means of band decomposed charge density and the
oscillator strength. Furthermore, the wave function calculation shows that the
first peak of the hetero-bilayer originates from spatially indirect exciton
where the electron and hole localized at -AlN and Mg(OH),
respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review
Studying the Molecular Ambient towards the Young Stellar Object EGO G35.04-0.47
We are performing a systematic study of the interstellar medium around
extended green objects (EGOs), likely massive young stellar objects driving
outflows. EGO G35.04-0.47 is located towards a dark cloud at the northern-west
edge of an HII region. Recently, H2 jets were discovered towards this source,
mainly towards its southwest, where the H2 1-0 S(1) emission peaks. Therefore,
the source was catalogued as the Molecular Hydrogen emission-line object MHO
2429. In order to study the molecular ambient towards this star-forming site,
we observed a region around the aforementioned EGO using the Atacama
Submillimeter Telescope Experiment in the 12CO J=3--2, 13CO J=3--2, HCO+
J=4--3, and CS J=7--6 lines with an angular and spectral resolution of 22" and
0.11 km s-1, respectively. The observations revealed a molecular clump where
the EGO is embedded at v_LSR ~ 51 km s-1, in coincidence with the velocity of a
Class I 95 GHz methanol maser previously detected. Analyzing the 12CO line we
discovered high velocity molecular gas in the range from 34 to 47 km s-1, most
likely a blueshifted outflow driven by the EGO. The alignment and shape of this
molecular structure coincide with those of the southwest lobe of MHO 2429
mainly between 46 and 47 km s-1, confirming that we are mapping its CO
counterpart. Performing a SED analysis of EGO G35.04-0.47 we found that its
central object should be an intermediate-mass young stellar object accreting
mass at a rate similar to those found in some massive YSOs. We suggest that
this source can become a massive YSO.Comment: accepted to be published in PASJ - 24 September 201
- …