14 research outputs found

    Cell Rep

    Get PDF
    VIDEO ABSTRACT: The pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we show, by noninvasive, high-resolution imaging of live zebrafish embryos, that endothelial cilia progressively deflect at the onset of blood flow and that the deflection angle correlates with calcium levels in endothelial cells. We demonstrate that alterations in shear stress, ciliogenesis, or expression of the calcium channel PKD2 impair the endothelial calcium level and both increase and perturb vascular morphogenesis. Altogether, these results demonstrate that endothelial cilia constitute a highly sensitive structure that permits the detection of low shear forces during vascular morphogenesis

    Missed Opportunity? The French Tanks in the Nivelle Offensive

    No full text

    Pulse propagation by a capacitive mechanism drives embryonic blood flow

    No full text
    Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function

    Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins

    No full text
    Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor {beta}1 integrin and occurs in the absence of blood flow. Downregulation of {beta}1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a {beta}1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells

    Origins Space Telescope Mission Concept Study Report

    No full text
    The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report

    The Origins Space Telescope: Mission Concept Overview

    No full text
    The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology
    corecore