118 research outputs found
Photons in gapless color-flavor-locked quark matter
We calculate the Debye and Meissner masses of a gauge boson in a material
consisting of two species of massless fermions that form a condensate of Cooper
pairs. We perform the calculation as a function of temperature, for the cases
of neutral Cooper pairs and charged Cooper pairs, and for a range of parameters
including gapped quaisparticles, and ungapped quasiparticles with both
quadratic and linear dispersion relations at low energy.
Our results are relevant to the behavior of photons and gluons in the gapless
color-flavor-locked phase of quark matter. We find that the photon's Meissner
mass vanishes, and the Debye mass shows a non-monotonic temperature dependence,
and at temperatures of order the pairing gap it drops to a minimum value of
order sqrt(alpha) times the quark chemical potential. We confirm previous
claims that at zero temperature an imaginary Meissner mass can arise from a
charged gapless condensate, and we find that at finite temperature this can
also occur for a gapped condensate.Comment: 22 pages, LaTeX; expanded discussion of temperature dependenc
Color-flavor locked superconductor in a magnetic field
We study the effects of moderately strong magnetic fields on the properties
of color-flavor locked color superconducting quark matter in the framework of
the Nambu-Jona-Lasinio model. We find that the energy gaps, which describe the
color superconducting pairing as well as the magnetization, are oscillating
functions of the magnetic field. Also, we observe that the oscillations of the
magnetization can be so strong that homogeneous quark matter becomes metastable
for a range of parameters. We suggest that this points to the possibility of
magnetic domains or other types of magnetic inhomogeneities in the quark cores
of magnetars.Comment: 12 pages, 3 figures. Version accepted for publication in Phys. Rev.
High Prevalence of Associated Birth Defects in Congenital Hypothyroidism
Aim. To identify dysmorphic features and cardiac, skeletal, and urogenital anomalies in patients with congenital hypothyroidism. Patients and Methods. Seventeen children with congenital primary hypothyroidism were recruited. Cause for congenital hypothyroidism was established using ultrasound of thyroid and 99mTc radionuclide thyroid scintigraphy. Malformations were identified by clinical examination, echocardiography, X-ray of lumbar spine, and ultrasonography of abdomen. Results. Ten (59%) patients (6 males and 4 females) had congenital malformations. Two had more than one congenital malformation (both spina bifida and ostium secundum atrial septal defect). Five (29%) had cardiac malformations, of whom three had only osteum secundum atrial septal defect (ASD), one had only patent ductus arteriosus (PDA), and one patient had both ASD and PDA. Seven patients (41%) had neural tube defects in the form of spina bifida occulta. Conclusion. Our study indicates the need for routine echocardiography in all patients with congenital hypothyroidism
Gapless phases of color-superconducting matter
We discuss gapless color superconductivity for neutral quark matter in beta
equilibrium at zero as well as at nonzero temperature. Basic properties of
gapless superconductors are reviewed. The current progress and the remaining
problems in the understanding of the phase diagram of strange quark matter are
discussed.Comment: 8 pages, 2 figures. Plenary talk at Strangeness in Quark Matter 2004
(SQM2004), Cape Town, South Africa, 15-20 September 2004. Minor correction
Critical temperature for kaon condensation in color-flavor locked quark matter
We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark
matter at nonzero temperature. Chiral symmetry breaking in this phase of cold
and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these
being the charged and neutral kaons K^+ and K^0. At zero temperature,
Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped,
this kaon condensed CFL phase can, for energies below the fermionic energy gap,
be described by an effective theory for the bosonic modes. We use this
effective theory to investigate the melting of the condensate: we determine the
temperature-dependent kaon masses self-consistently using the two-particle
irreducible effective action, and we compute the transition temperature for
Bose-Einstein condensation. Our results are important for studies of transport
properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric
neutrality on critical temperature added; references added; version to appear
in J.Phys.
Bulk viscosity in 2SC quark matter
The bulk viscosity of three-flavor color-superconducting quark matter
originating from the nonleptonic process u+s u+d is computed. It is assumed
that up and down quarks form Cooper pairs while the strange quark remains
unpaired (2SC phase). A general derivation of the rate of strangeness
production is presented, involving contributions from a multitude of different
subprocesses, including subprocesses that involve different numbers of gapped
quarks as well as creation and annihilation of particles in the condensate. The
rate is then used to compute the bulk viscosity as a function of the
temperature, for an external oscillation frequency typical of a compact star
r-mode. We find that, for temperatures far below the critical temperature T_c
for 2SC pairing, the bulk viscosity of color-superconducting quark matter is
suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c
the color-superconducting quark matter has a higher bulk viscosity. This is
potentially relevant for the suppression of r-mode instabilities early in the
life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected
numerical error in the plots; 2SC bulk viscosity is now larger than unpaired
bulk viscosity in a wider temperature rang
Bulk viscosity in a cold CFL superfluid
We compute one of the bulk viscosity coefficients of cold CFL quark matter in
the temperature regime where the contribution of mesons, quarks and gluons to
transport phenomena is Boltzmann suppressed. In that regime dissipation occurs
due to collisions of superfluid phonons, the Goldstone modes associated to the
spontaneous breaking of baryon symmetry. We first review the hydrodynamics of
relativistic superfluids, and remind that there are at least three bulk
viscosity coefficients in these systems. We then compute the bulk viscosity
coefficient associated to the normal fluid component of the superfluid. In our
analysis we use Son's effective field theory for the superfluid phonon, amended
to include scale breaking effects proportional to the square of the strange
quark mass m_s. We compute the bulk viscosity at leading order in the scale
breaking parameter, and find that it is dominated by collinear splitting and
joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T,
growing at low temperature T until the phonon fluid description stops making
sense. Our results are relevant to study the rotational properties of a compact
star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in
JCA
Gluonic phases, vector condensates, and exotic hadrons in dense QCD
We study the dynamics in phases with vector condensates of gluons (gluonic
phases) in dense two-flavor quark matter. These phases yield an example of
dynamics in which the Higgs mechanism is provided by condensates of gauge (or
gauge plus scalar) fields. Because vacuum expectation values of spatial
components of vector fields break the rotational symmetry, it is naturally to
have a spontaneous breakdown both of external and internal symmetries in this
case. In particular, by using the Ginzburg-Landau approach, we establish the
existence of a gluonic phase with both the rotational symmetry and the
electromagnetic U(1) being spontaneously broken. In other words, this phase
describes an anisotropic medium in which the color and electric
superconductivities coexist. It is shown that this phase corresponds to a
minimum of the Ginzburg-Landau potential and, unlike the two-flavor
superconducting (2SC) phase, it does not suffer from the chromomagnetic
instability. The dual (confinement) description of its dynamics is developed
and it is shown that there are light exotic vector hadrons in the spectrum,
some of which condense. Because most of the initial symmetries in this system
are spontaneously broken, its dynamics is very rich.Comment: 33 pages, RevTeX; v.2: Published PRD versio
Optically opaque color-flavor locked phase inside compact stars
The contribution of thermally excited electron-positron pairs to the bulk
properties of the color-flavor locked quark phase inside compact stars is
examined. The presence of these pairs causes the photon mean free path to be
much smaller than a typical core radius ( km) for all
temperatures above 25 keV so that the photon contribution to the thermal
conductivity is much smaller than that of the Nambu-Goldstone bosons. We also
find that the electrons and positrons dominate the electrical conductivity,
while their contributions to the total thermal energy is negligible.Comment: 3 pages, 2 figures. Published versio
The Minimal CFL-Nuclear Interface
At nuclear matter density, electrically neutral strongly interacting matter
in weak equilibrium is made of neutrons, protons and electrons. At sufficiently
high density, such matter is made of up, down and strange quarks in the
color-flavor locked phase, with no electrons. As a function of increasing
density (or, perhaps, increasing depth in a compact star) other phases may
intervene between these two phases which are guaranteed to be present. The
simplest possibility, however, is a single first order phase transition between
CFL and nuclear matter. Such a transition, in space, could take place either
through a mixed phase region or at a single sharp interface with electron-free
CFL and electron-rich nuclear matter in stable contact. Here we construct a
model for such an interface. It is characterized by a region of separated
charge, similar to an inversion layer at a metal-insulator boundary. On the CFL
side, the charged boundary layer is dominated by a condensate of negative
kaons. We then consider the energetics of the mixed phase alternative. We find
that the mixed phase will occur only if the nuclear-CFL surface tension is
significantly smaller than dimensional analysis would indicate.Comment: 30 pages, 7 figure
- …