3,640 research outputs found

    Random walks and random fixed-point free involutions

    Full text link
    A bijection is given between fixed point free involutions of {1,2,...,2N}\{1,2,...,2N\} with maximum decreasing subsequence size 2p2p and two classes of vicious (non-intersecting) random walker configurations confined to the half line lattice points l≥1l \ge 1. In one class of walker configurations the maximum displacement of the right most walker is pp. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Analytic solutions of the 1D finite coupling delta function Bose gas

    Full text link
    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite NN are given and from them results for general NN are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these new results are predicated on the Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by Phys. Rev.

    Casualisation of the nursing workforce in Australia: driving forces and implications.

    Full text link
    This article provides an overview of the extent of casualisation of the nursing workforce in Australia, focusing on the impact for those managing the system. The implications for nurse managers in particular are considerable in an industry where service demand is difficult to control and where individual nurses are thought to be increasingly choosing to work casually. While little is known of the reasons behind nurses exercising their preference for casual work arrangements, some reasons postulated include visa status (overseas trained nurses on holiday/working visas); permanent employees taking on additional shifts to increase their income levels; and those who elect to work under casual contracts for lifestyle reasons. Unknown is the demography of the casual nursing workforce, how these groups are distributed within the workforce, and how many contracts of employment they have across the health service--either through privately managed nursing agencies or hospital managed casual pools. A more detailed knowledge of the forces driving the decisions of this group is essential if health care organisations are to equip themselves to manage this changing workforce and maintain a standard of patient care that is acceptable to the community

    Applications and generalizations of Fisher-Hartwig asymptotics

    Full text link
    Fisher-Hartwig asymptotics refers to the large nn form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above TcT_c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.Comment: 25 page

    Gap Probabilities for Edge Intervals in Finite Gaussian and Jacobi Unitary Matrix Ensembles

    Full text link
    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N×N N \times N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general NN case. For N=1 and N=2 the probabilities and thus the solution of the equations are given explicitly. An asymptotic expansion for large gap size is obtained from the equation in the Hermite case, and also studied is the scaling at the edge of the Hermite spectrum as N→∞ N \to \infty , and the Jacobi to Hermite limit; these last two studies make correspondence to other cases reported here or known previously. Moreover, the differential equation arising in the Hermite ensemble is solved in terms of an explicit rational function of a {Painlev\'e-V} transcendent and its derivative, and an analogous solution is provided in the two Jacobi cases but this time involving a {Painlev\'e-VI} transcendent.Comment: 32 pages, Latex2

    Spectral density asymptotics for Gaussian and Laguerre β\beta-ensembles in the exponentially small region

    Full text link
    The first two terms in the large NN asymptotic expansion of the β\beta moment of the characteristic polynomial for the Gaussian and Laguerre β\beta-ensembles are calculated. This is used to compute the asymptotic expansion of the spectral density in these ensembles, in the exponentially small region outside the leading support, up to terms o(1)o(1) . The leading form of the right tail of the distribution of the largest eigenvalue is given by the density in this regime. It is demonstrated that there is a scaling from this, to the right tail asymptotics for the distribution of the largest eigenvalue at the soft edge.Comment: 19 page

    Watermelon configurations with wall interaction: exact and asymptotic results

    Full text link
    We perform an exact and asymptotic analysis of the model of nn vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially non-rigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.Comment: AmS-TeX, 41 page

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT→0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Scaling limit of vicious walks and two-matrix model

    Full text link
    We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a system of nonintersecting Brownian motions. The spatial distribution of NN particles is studied and it is described by use of the probability density function of eigenvalues of N×NN \times N Gaussian random matrices. The particle distribution depends on the ratio of the observation time tt and the time interval TT in which the nonintersecting condition is imposed. As t/Tt/T is going on from 0 to 1, there occurs a transition of distribution, which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the particle distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
    • …
    corecore