3,640 research outputs found
Random walks and random fixed-point free involutions
A bijection is given between fixed point free involutions of
with maximum decreasing subsequence size and two classes of vicious
(non-intersecting) random walker configurations confined to the half line
lattice points . In one class of walker configurations the maximum
displacement of the right most walker is . Because the scaled distribution
of the maximum decreasing subsequence size is known to be in the soft edge GOE
(random real symmetric matrices) universality class, the same holds true for
the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Analytic solutions of the 1D finite coupling delta function Bose gas
An intensive study for both the weak coupling and strong coupling limits of
the ground state properties of this classic system is presented. Detailed
results for specific values of finite are given and from them results for
general are determined. We focus on the density matrix and concomitantly
its Fourier transform, the occupation numbers, along with the pair correlation
function and concomitantly its Fourier transform, the structure factor. These
are the signature quantities of the Bose gas. One specific result is that for
weak coupling a rational polynomial structure holds despite the transcendental
nature of the Bethe equations. All these new results are predicated on the
Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by
Phys. Rev.
Casualisation of the nursing workforce in Australia: driving forces and implications.
This article provides an overview of the extent of casualisation of the nursing workforce in Australia, focusing on the impact for those managing the system. The implications for nurse managers in particular are considerable in an industry where service demand is difficult to control and where individual nurses are thought to be increasingly choosing to work casually. While little is known of the reasons behind nurses exercising their preference for casual work arrangements, some reasons postulated include visa status (overseas trained nurses on holiday/working visas); permanent employees taking on additional shifts to increase their income levels; and those who elect to work under casual contracts for lifestyle reasons. Unknown is the demography of the casual nursing workforce, how these groups are distributed within the workforce, and how many contracts of employment they have across the health service--either through privately managed nursing agencies or hospital managed casual pools. A more detailed knowledge of the forces driving the decisions of this group is essential if health care organisations are to equip themselves to manage this changing workforce and maintain a standard of patient care that is acceptable to the community
Applications and generalizations of Fisher-Hartwig asymptotics
Fisher-Hartwig asymptotics refers to the large form of a class of
Toeplitz determinants with singular generating functions. This class of
Toeplitz determinants occurs in the study of the spin-spin correlations for the
two-dimensional Ising model, and the ground state density matrix of the
impenetrable Bose gas, amongst other problems in mathematical physics. We give
a new application of the original Fisher-Hartwig formula to the asymptotic
decay of the Ising correlations above , while the study of the Bose gas
density matrix leads us to generalize the Fisher-Hartwig formula to the
asymptotic form of random matrix averages over the classical groups and the
Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our
generalizations is that they extend to Hankel determinants the Fisher-Hartwig
asymptotic form known for Toeplitz determinants.Comment: 25 page
Gap Probabilities for Edge Intervals in Finite Gaussian and Jacobi Unitary Matrix Ensembles
The probabilities for gaps in the eigenvalue spectrum of the finite dimension
random matrix Hermite and Jacobi unitary ensembles on some
single and disconnected double intervals are found. These are cases where a
reflection symmetry exists and the probability factors into two other related
probabilities, defined on single intervals. Our investigation uses the system
of partial differential equations arising from the Fredholm determinant
expression for the gap probability and the differential-recurrence equations
satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find
second and third order nonlinear ordinary differential equations defining the
probabilities in the general case. For N=1 and N=2 the probabilities and
thus the solution of the equations are given explicitly. An asymptotic
expansion for large gap size is obtained from the equation in the Hermite case,
and also studied is the scaling at the edge of the Hermite spectrum as , and the Jacobi to Hermite limit; these last two studies make
correspondence to other cases reported here or known previously. Moreover, the
differential equation arising in the Hermite ensemble is solved in terms of an
explicit rational function of a {Painlev\'e-V} transcendent and its derivative,
and an analogous solution is provided in the two Jacobi cases but this time
involving a {Painlev\'e-VI} transcendent.Comment: 32 pages, Latex2
Spectral density asymptotics for Gaussian and Laguerre -ensembles in the exponentially small region
The first two terms in the large asymptotic expansion of the
moment of the characteristic polynomial for the Gaussian and Laguerre
-ensembles are calculated. This is used to compute the asymptotic
expansion of the spectral density in these ensembles, in the exponentially
small region outside the leading support, up to terms . The leading form
of the right tail of the distribution of the largest eigenvalue is given by the
density in this regime. It is demonstrated that there is a scaling from this,
to the right tail asymptotics for the distribution of the largest eigenvalue at
the soft edge.Comment: 19 page
Watermelon configurations with wall interaction: exact and asymptotic results
We perform an exact and asymptotic analysis of the model of vicious
walkers interacting with a wall via contact potentials, a model introduced by
Brak, Essam and Owczarek. More specifically, we study the partition function of
watermelon configurations which start on the wall, but may end at arbitrary
height, and their mean number of contacts with the wall. We improve and extend
the earlier (partially non-rigorous) results by Brak, Essam and Owczarek,
providing new exact results, and more precise and more general asymptotic
results, in particular full asymptotic expansions for the partition function
and the mean number of contacts. Furthermore, we relate this circle of problems
to earlier results in the combinatorial and statistical literature.Comment: AmS-TeX, 41 page
Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study
We study the two-dimensional XY model with quenched random phases by Monte
Carlo simulation and finite-size scaling analysis. We determine the phase
diagram of the model and study its critical behavior as a function of disorder
and temperature. If the strength of the randomness is less than a critical
value, , the system has a Kosterlitz-Thouless (KT) phase transition
from the paramagnetic phase to a state with quasi-long-range order. Our data
suggest that the latter exists down to T=0 in contradiction with theories that
predict the appearance of a low-temperature reentrant phase. At the critical
disorder and for there is no
quasi-ordered phase. At zero temperature there is a phase transition between
two different glassy states at . The functional dependence of the
correlation length on suggests that this transition corresponds to the
disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure
Scaling limit of vicious walks and two-matrix model
We consider the diffusion scaling limit of the one-dimensional vicious walker
model of Fisher and derive a system of nonintersecting Brownian motions. The
spatial distribution of particles is studied and it is described by use of
the probability density function of eigenvalues of Gaussian random
matrices. The particle distribution depends on the ratio of the observation
time and the time interval in which the nonintersecting condition is
imposed. As is going on from 0 to 1, there occurs a transition of
distribution, which is identified with the transition observed in the
two-matrix model of Pandey and Mehta. Despite of the absence of matrix
structure in the original vicious walker model, in the diffusion scaling limit,
accumulation of contact repulsive interactions realizes the correlated
distribution of eigenvalues in the multimatrix model as the particle
distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
- …