1,444 research outputs found
Absorbing-state phase transitions: exact solutions of small systems
I derive precise results for absorbing-state phase transitions using exact
(numerically determined) quasistationary probability distributions for small
systems. Analysis of the contact process on rings of 23 or fewer sites yields
critical properties (control parameter, order-parameter ratios, and critical
exponents z and beta/nu_perp) with an accuracy of better than 0.1%; for the
exponent nu_perp the accuracy is about 0.5%. Good results are also obtained for
the pair contact process
A globally accurate theory for a class of binary mixture models
Using the self-consistent Ornstein-Zernike approximation (SCOZA) results for
the 3D Ising model, we obtain phase diagrams for binary mixtures described by
decorated models. We obtain the plait point, binodals, and closed-loop
coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler.
The results are in good agreement with series expansions and experiments.Comment: 16 pages, 10 figure
Series expansion for a stochastic sandpile
Using operator algebra, we extend the series for the activity density in a
one-dimensional stochastic sandpile with fixed particle density p, the first
terms of which were obtained via perturbation theory [R. Dickman and R.
Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time;
the coefficients are polynomials in p. We devise an algorithm for evaluating
expectations of operator products and extend the series to O(t^{16}).
Constructing Pade approximants to a suitably transformed series, we obtain
predictions for the activity that compare well against simulations, in the
supercritical regime.Comment: Extended series and improved analysi
Diffusive epidemic process: theory and simulation
We study the continuous absorbing-state phase transition in the
one-dimensional diffusive epidemic process via mean-field theory and Monte
Carlo simulation. In this model, particles of two species (A and B) hop on a
lattice and undergo reactions B -> A and A + B -> 2B; the total particle number
is conserved. We formulate the model as a continuous-time Markov process
described by a master equation. A phase transition between the (absorbing)
B-free state and an active state is observed as the parameters (reaction and
diffusion rates, and total particle density) are varied. Mean-field theory
reveals a surprising, nonmonotonic dependence of the critical recovery rate on
the diffusion rate of B particles. A computational realization of the process
that is faithful to the transition rates defining the model is devised,
allowing for direct comparison with theory. Using the quasi-stationary
simulation method we determine the order parameter and the survival time in
systems of up to 4000 sites. Due to strong finite-size effects, the results
converge only for large system sizes. We find no evidence for a discontinuous
transition. Our results are consistent with the existence of three distinct
universality classes, depending on whether A particles diffusive more rapidly,
less rapidly, or at the same rate as B particles.Comment: 19 pages, 5 figure
A field theoretic approach to master equations and a variational method beyond the Poisson ansatz
We develop a variational scheme in a field theoretic approach to a stochastic
process. While various stochastic processes can be expressed using master
equations, in general it is difficult to solve the master equations exactly,
and it is also hard to solve the master equations numerically because of the
curse of dimensionality. The field theoretic approach has been used in order to
study such complicated master equations, and the variational scheme achieves
tremendous reduction in the dimensionality of master equations. For the
variational method, only the Poisson ansatz has been used, in which one
restricts the variational function to a Poisson distribution. Hence, one has
dealt with only restricted fluctuation effects. We develop the variational
method further, which enables us to treat an arbitrary variational function. It
is shown that the variational scheme developed gives a quantitatively good
approximation for master equations which describe a stochastic gene regulatory
network.Comment: 13 pages, 2 figure
Wang-Landau sampling in three-dimensional polymers
Monte Carlo simulations using Wang-Landau sampling are performed to study
three-dimensional chains of homopolymers on a lattice. We confirm the accuracy
of the method by calculating the thermodynamic properties of this system. Our
results are in good agreement with those obtained using Metropolis importance
sampling. This algorithm enables one to accurately simulate the usually hardly
accessible low-temperature regions since it determines the density of states in
a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic
Sandpiles with height restrictions
We study stochastic sandpile models with a height restriction in one and two
dimensions. A site can topple if it has a height of two, as in Manna's model,
but, in contrast to previously studied sandpiles, here the height (or number of
particles per site), cannot exceed two. This yields a considerable
simplification over the unrestricted case, in which the number of states per
site is unbounded. Two toppling rules are considered: in one, the particles are
redistributed independently, while the other involves some cooperativity. We
study the fixed-energy system (no input or loss of particles) using cluster
approximations and extensive simulations, and find that it exhibits a
continuous phase transition to an absorbing state at a critical value zeta_c of
the particle density. The critical exponents agree with those of the
unrestricted Manna sandpile.Comment: 10 pages, 14 figure
N-Site approximations and CAM analysis for a stochastic sandpile
I develop n-site cluster approximations for a stochastic sandpile in one
dimension. A height restriction is imposed to limit the number of states: each
site can harbor at most two particles (height z_i \leq 2). (This yields a
considerable simplification over the unrestricted case, in which the number of
states per site is unbounded.) On the basis of results for n \leq 11 sites, I
estimate the critical particle density as zeta_c = 0.930(1), in good agreement
with simulations. A coherent anomaly analysis yields estimates for the order
parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_||
\simeq 2.5).Comment: 12 pages, 7 figure
Diffusion in stochastic sandpiles
We study diffusion of particles in large-scale simulations of one-dimensional
stochastic sandpiles, in both the restricted and unrestricted versions. The
results indicate that the diffusion constant scales in the same manner as the
activity density, so that it represents an alternative definition of an order
parameter. The critical behavior of the unrestricted sandpile is very similar
to that of its restricted counterpart, including the fact that a data collapse
of the order parameter as a function of the particle density is only possible
over a very narrow interval near the critical point. We also develop a series
expansion, in inverse powers of the density. for the collective diffusion
coefficient in a variant of the stochastic sandpile in which the toppling rate
at a site with particles is , and compare the theoretical
prediction with simulation results.Comment: 21 page
Nonuniversal Critical Spreading in Two Dimensions
Continuous phase transitions are studied in a two dimensional nonequilibrium
model with an infinite number of absorbing configurations. Spreading from a
localized source is characterized by nonuniversal critical exponents, which
vary continuously with the density phi in the surrounding region. The exponent
delta changes by more than an order of magnitude, and eta changes sign. The
location of the critical point also depends on phi, which has important
implications for scaling. As expected on the basis of universality, the static
critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques
- …