6 research outputs found
Blood 89 12 4493 4500 W B SAUNDERS CO PHILADELPHIA; INDEPENDENCE SQUARE WEST CURTIS CENTER, STE 300, PHILADELPHIA, PA 19106-3399
G28-5 sFv-PE40 is a single-chain immunotoxin targeted to CD40, which is highly expressed on human hematologic malignancies, including non-Hodgkin's lymphoma, B-lineage leukemias, multiple myeloma, and Hodgkin's disease, as well as certain carcinomas. In vitro analysis showed that this monovalent immunotoxin had a binding affinity of 3 nmol/L, within 15-fold of the bivalent parental monoclonal antibody. G28-5 sFv-PE40 was stable when incubated in mouse serum at 37 degrees C for 6 hours and cleared from the circulation of mice with a half-life of 16.7 minutes. This immunotoxin was effective in treating human Burkitt's lymphoma xenografted SCID mice with complete responses, defined by an asymptomatic phenotype for greater than 120 days, obtained at doses of 0.13 to 0.26 mg/kg. The efficacy of treatment was dependent on the schedule used, with every three days for five injections being the most effective tested. The toxicity of G28-5 sFv-PE40 was examined in SCID mice, rats, and monkeys, with the maximum tolerated dose being 0.48, 1.0, and 1.67 mg/kg, respectively. Comparative immunohistology showed that the G28-5 specificity was qualitatively similar between human and monkey tissue. In summary, G28-5 sFv-PE40 was effective at inducing complete antitumor responses in lymphoma xenografted mice at doses that were well tolerated in mice, rats, and monkeys. (C) 1997 by The American Society of Hematology
Design and Evaluation of Microemulsions for Improved Parenteral Delivery of Propofol
The objective of this investigation was to evaluate the potential of the microemulsions to improve the parenteral delivery of propofol. Pseudo-ternary phase diagrams were plotted to identify microemulsification region of propofol. The propofol microemulsions were evaluated for globule size, physical and chemical stability, osmolarity, in vitro hemolysis, pain caused by injection using rat paw-lick test and in vivo anesthetic activity. The microemulsions exhibited globule size less than 25 nm and demonstrated good physical and chemical stability. Propofol microemulsions were slightly hypertonic and resulted in less than 1% hemolysis after 2 h of storage with human blood at 37 °C. Rat paw-lick test indicated that propofol microemulsions were significantly less painful as compared to the marketed propofol formulation. The anesthetic activity of the microemulsions was similar to the marketed propofol formulation indicating that they do not compromise the pharmacological action of propofol. The stability studies indicated that the microemulsions were stable for 3 months when stored at 5 ± 3 °C. Thus, microemulsions appeared to be an interesting alternative to the current propofol formulations