28 research outputs found

    Phase II study of the oxygen saturation curve left shifting agent BW12C in combination with the hypoxia activated drug mitomycin C in advanced colorectal cancer

    Get PDF
    BW12C (5-[2-formyl-3-hydroxypenoxyl] pentanoic acid) stabilizes oxyhaemoglobin, causing a reversible left-shift of the oxygen saturation curve (OSC) and tissue hypoxia. The activity of mitomycin C (MMC) is enhanced by hypoxia. In this phase II study, 17 patients with metastatic colorectal cancer resistant to 5-fluorouracil (5-FU) received BW12C and MMC. BW12C was given as a bolus loading dose of 45 mg kg−1over 1 h, followed by a maintenance infusion of 4 mg kg−1h−1for 5 h. MMC 6 mg m−2was administered over 15 min immediately after the BW12C bolus. The 15 evaluable patients had progressive disease after a median of 2 (range 1–4) cycles of chemotherapy. Haemoglobin electrophoresis 3 and 5 h after the BW12C bolus dose showed a fast moving band consistent with the BW12C-oxyhaemoglobin complex, accounting for approximately 50% of total haemoglobin. The predominant toxicities – nausea/vomiting and vein pain – were mild and did not exceed CTC grade 2. Liver31P magnetic resonance spectroscopy of patients with hepatic metastases showed no changes consistent with tissue hypoxia. The principle of combining a hypoxically activated drug with an agent that increases tissue hypoxia is clinically feasible, producing an effect equivalent to reducing tumour oxygen delivery by at least 50%. However, BW12C in combination with MMC for 5-FU-resistant colorectal cancer is not an effective regimen. This could be related to drug resistance rather than a failure to enhance cytotoxicity. © 2000 Cancer Research Campaig

    Species differences in the binding of compounds designed to fit a site of known structure in adult human haemoglobin.

    No full text
    1. Oxygen dissociation curves are reported for human haemoglobins A1, FII, FI, A1c and Raleigh (beta1 valine leads to acetylalanine) and for horse haemoglobin in the absence and presence of 2,3-diphosphoglycerate (DPG), or 4,4'-diformyl-2-bibenzyl oxyacetic acid, or the bisulphite addition compound of the latter. 2. These haemoglobins were selected because their amino acid sequences are different at the DPG receptor site of human adult deoxyhaemoglobin. 3. The size of the shifts of the dissociation curves are in the sequence expected from the postulated numbers of interactions made by each compound with each haemoglobin type, based on the assumption of a common receptor site for the three compounds. 4. Multiple linear regression analysis shows that the free energies of interaction of the compounds with the haemoglobins may be predicted, to a first approximation, by summing the number of ionic and covalent bonds predicted for each effector-receptor combination, a reversible covalent bond contributing about twice as much energy (-6.78 kJmol-1) as an ionic interaction (-3.14 kJmol-1)

    The assignment of charge states in complex electrospray mass spectra

    No full text
    corecore