21,477 research outputs found

    Correlation of eigenstates in the critical regime of quantum Hall systems

    Full text link
    We extend the multifractal analysis of the statistics of critical wave functions in quantum Hall systems by calculating numerically the correlations of local amplitudes corresponding to eigenstates at two different energies. Our results confirm multifractal scaling relations which are different from those occurring in conventional critical phenomena. The critical exponent corresponding to the typical amplitude, α0≈2.28\alpha_0\approx 2.28, gives an almost complete characterization of the critical behavior of eigenstates, including correlations. Our results support the interpretation of the local density of states being an order parameter of the Anderson transition.Comment: 17 pages, 9 Postscript figure

    Microscopic dynamics of supercooled liquids from first principles

    Full text link
    Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics

    Relaxation Patterns in Supercooled Liquids from Generalized Mode-Coupling Theory

    Full text link
    The mode-coupling theory of the glass transition treats the dynamics of supercooled liquids in terms of two-point density correlation functions. Here we consider a generalized, hierarchical formulation of schematic mode-coupling equations in which the full basis of multipoint density correlations is taken into account. By varying the parameters that control the effective contributions of higher-order correlations, we show that infinite hierarchies can give rise to both sharp and avoided glass transitions. Moreover, small changes in the form of the coefficients result in different scaling behaviors of the structural relaxation time, providing a means to tune the fragility in glass-forming materials. This demonstrates that the infinite-order construct of generalized mode-coupling theory constitutes a powerful and unifying framework for kinetic theories of the glass transition

    Dielectric branes in non-trivial backgrounds

    Full text link
    We present a procedure to evaluate the action for dielectric branes in non-trivial backgrounds. These backgrounds must be capable to be taken into a Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this wrapping factor is gauged away. Examples of this are AdS_5xS^5 and AdS_3xS^3xT^4, where we perform the construction of different stable systems, which stability relies in its dielectric character.Comment: 14 pages, published versio

    Comment on ``Critical behavior of a two-species reaction-diffusion problem''

    Full text link
    In a recent paper, de Freitas et al. [Phys. Rev. E 61, 6330 (2000)] presented simulational results for the critical exponents of the two-species reaction-diffusion system A + B -> 2B and B -> A in dimension d = 1. In particular, the correlation length exponent was found as \nu = 2.21(5) in contradiction to the exact relation \nu = 2/d. In this Comment, the symmetry arguments leading to exact critical exponents for the universality class of this reaction-diffusion system are concisely reconsidered

    Pulmonary giant cells and their significance for the diagnosis of asphyxiation

    Get PDF
    This study was performed to prove whether the detection of polynuclear giant cells in lungs is useful for the diagnosis of asphyxiation due to throttling or strangulation. Therefore, lung specimens of 54 individuals with different natural and unnatural causes of death were investigated. In most lungs examined numerous alveolar macrophages with 1-2 nuclei were found. Polynuclear giant cells, which were arbitrarily defined as alveolar macrophages containing 3 or more nuclei, were observed in all groups investigated except in the cases of hypoxia due to covering the head with plastic bags. Apparent differences between the other groups in particular an increased number in cases of throttling or strangulation, could not be observed. Immunohistochemical investigations confirmed the hypothesis that the observed polynuclear giant cells were derived from alveolar macrophages. The immunohistochemical analysis of the proliferation marker antigen Ki 67 revealed no positive reaction in the nuclei of polynuclear giant cells indicating that these cells had not developed shortly before death by endomitosis as an adaptative change following reduction in oxygen supply. The results provide evidence that the detection of pulmonary polynuclear giant cells cannot be used as a practical indicator for death by asphyxiation due to throttling or strangulation

    Strongly anisotropic roughness in surfaces driven by an oblique particle flux

    Full text link
    Using field theoretic renormalization, an MBE-type growth process with an obliquely incident influx of atoms is examined. The projection of the beam on the substrate plane selects a "parallel" direction, with rotational invariance restricted to the transverse directions. Depending on the behavior of an effective anisotropic surface tension, a line of second order transitions is identified, as well as a line of potentially first order transitions, joined by a multicritical point. Near the second order transitions and the multicritical point, the surface roughness is strongly anisotropic. Four different roughness exponents are introduced and computed, describing the surface in different directions, in real or momentum space. The results presented challenge an earlier study of the multicritical point.Comment: 11 pages, 2 figures, REVTeX

    Random Resistor-Diode Networks and the Crossover from Isotropic to Directed Percolation

    Full text link
    By employing the methods of renormalized field theory we show that the percolation behavior of random resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking perturbation. We present a two-loop calculation of the crossover exponent ϕ\phi. Upon blending the ϵ\epsilon-expansion result with the exact value ϕ=1\phi =1 for one dimension by a rational approximation, we obtain for two dimensions ϕ=1.29±0.05\phi = 1.29\pm 0.05. This value is in agreement with the recent simulations of a two-dimensional random diode network by Inui, Kakuno, Tretyakov, Komatsu, and Kameoka, who found an order parameter exponent β\beta different from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover from isotropic to directed percolation by Frey, T\"{a}uber, and Schwabl and clear up some minor shortcomings.Comment: 24 pages, 2 figure

    Differential thermal analysis and solution growth of intermetallic compounds

    Get PDF
    To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr7_7Ni2_2Si5_5, and YMn4_4Al8_8.Comment: 17 pages, 8 figure
    • …
    corecore