6 research outputs found

    The European Federation of Organisations for Medical Physics Policy Statement No. 6.1: Recommended Guidelines on National Registration Schemes for Medical Physicists

    Get PDF
    This EFOMP Policy Statement is an update of Policy Statement No. 6 first published in 1994. The present version takes into account the European Union Parliament and Council Directive 2013/55/EU that amends Directive 2005/36/EU on the recognition of professional qualifications and the European Union Council Directive 2013/59/EURATOM laying down the basic safety standards for protection against the dangers arising from exposure to ionising radiation. The European Commission Radiation Protection Report No. 174, Guidelines on Medical Physics Expert and the EFOMP Policy Statement No. 12.1, Recommendations on Medical Physics Education and Training in Europe 2014, are also taken into consideration. The EFOMP National Member Organisations are encouraged to update their Medical Physics registration schemes where these exist or to develop registration schemes taking into account the present version of this EFOMP Policy Statement (Policy Statement No. 6.1"Recommended Guidelines on National Registration Schemes for Medical Physicists")

    The European Federation of Organisations for Medical Physics Policy Statement No. 10.1: Recommended Guidelines on National Schemes for Continuing Professional Development of Medical Physicists

    Get PDF
    Continuing Professional Development (CPD) is vital to the medical physics profession if it is to embrace the pace of change occurring in medical practice. As CPD is the planned acquisition of knowledge, experience and skills required for professional practice throughout one's working life it promotes excellence and protects the profession and public against incompetence. Furthermore, CPD is a recommended prerequisite of registration schemes (Caruana et al. 2014 [1]; [2]) and is implied in the Council Directive 2013/59/EURATOM (EU BSS) [3] and the International Basic Safety Standards (BSS) [4]. It is to be noted that currently not all national registration schemes require CPD to maintain the registration status necessary to practise medical physics. Such schemes should consider adopting CPD as a prerequisite for renewing registration after a set period of time. This EFOMP Policy Statement, which is an amalgamation and an update of the EFOMP Policy Statements No. 8 and No. 10, presents guidelines for the establishment of national schemes for CPD and activities that should be considered for CPD

    What is the future for nuclear fission technology? A technical opinion from the Guest Editors of VSI NFT series and the Editor of the Journal Nuclear Engineering and Design

    Get PDF
    The Nuclear Fission Technology (NFT) series of Virtual Special Issues (VSIs) for the Journal Nuclear Engineering and Design (J NED) was proposed in 2023, including the request to potential authors of manuscript to address the following questions: o For how long will (water-cooling based) large size nuclear reactor survive? o Will water-technology based SMRs displace large reactors? o Will non-water-cooling technology SMRs and micro-reactors have an industrial deployment? o Will breeding technology, including thorium exploitation, have due relevance? o Will ‘nuclear infrastructure’ (fuel supply, financial framework, competence by regulators for new designs, waste management, etc.) remain or be sufficiently robust? Several dozen Guest Editors (GEs), i.e., the authors of the present document, managed the activity together with the Editor-in-Chief (EiC) of the journal. More than one thousand scientists contributed 470+ manuscripts, not evenly distributed among the geographical regions of the world and not necessarily addressing directly the bullet-questions, but certainly providing a view of current research being done. Key conclusions are as follows: (a) Large size reactors are necessary for a sustainable and safe exploitation of nuclear fission technology; (b) The burning of 233U (from thorium) and 239Pu (from uranium) is unavoidable, as well as recycling residual uranium currently part of waste; (c) Nuclear infrastructures in countries that currently use, or are entering the use of, fission energy for electricity production need a century planning; (d) The adoption of small reactors for commercial naval propulsion, hydrogen production and desalination is highly recommended

    The ENEN's role in shaping the European nuclear education

    No full text
    The European Nuclear Education Network (ENEN) just celebrated in 2023 the first twenty years of existence. During this period, the ENEN network grew, reaching today more than ninety Members, Partners and Supporters. The mission of ENEN is the preservation and the further development of expertise in the nuclear fields by higher Education and Training. We target to reach this objective through the co-operation between universities, research organisations, regulatory bodies, the industry and any other organisations involved in the application of nuclear science and ionising radiation. Networking is an important method that we use to achieve success in our actions. Either if we speak about networking between people that aim at delivering specific education and training (E&T) actions (attraction to nuclear, higher education and training, workshops, webinars, summer/ winter schools, etc.) or networking between persons who need an upgrade in their professional career through these E&T actions, we strongly believe that collaboration is the answer for a safe usage of nuclear energy in Europe and beyond. Today, ENEN is the response to the European need for highly educated people in the nuclear field by meeting these needs through cooperation between industry, research centers, technical support organizations international organizations and higher education institutions. This paper summarizes the recent evolution of ENEN after twenty years of existence and the vision for the coming period, in the service of nuclear education in Europe

    Influence of sample preparation optimization on the accuracy of dose assessment of an automatic non-fluorescent MN scoring system

    No full text
    Purpose: Automatizing the scoring of the cytokinesis-blocked micronucleus assay spares a lot of valuable time. The dose-effect relationship can be applied reliably for dose estimation if the quality of the slides is the same from the perspective of the used image processing algorithm. This aspect brings in additional requirements against the quality of the slides compared to the conventional visual scoring. Materials and methods: An add-in software was created to the non-fluorescent RS-MN automatic MN scoring system which is capable of measuring quantitatively the degree of typical anomalies. The image processing is less reliable when the presence of these anomalies is more frequent. The behavior of the designed sample quality parameters (SQPs) was tested on in vitro irradiated peripheral blood samples (0, 1, and 2 Gy) obtained from a healthy donor and also on samples from patients undergoing low dose-rate brachytherapy. Results: We examined 20 different SQPs and identified two that are independent and correlate significantly with the error of the fully automatic MN frequency. One is related to the size of the cells and the other reflects the homogeneity of the environment. An equation was established which presents a connection between the error of the auto MN frequency and the SQPs. By adding a fourth cleaning step to the conventional sample preparation and changing the pre-dripping temperature of the slide, the SQP can be modified, and consequently, the sample quality can be improved. The gain in accuracy is 54 ± 10 MN per 1000 binucleated cells, which corresponds to the effects of 0.5 Gy. Around the lowest limit of detection (<0.5 Gy), it means a 50–100% drop in the error of dose, which is significant. With sample quality harmonization, the positive predictive value was raised to 80–93% depending on the dose. Conclusions: With the technique described in this paper, the suitability for automated scoring of a micronucleus slide can be tested quantitatively and objectively. A method is presented with which in some cases the uncertainty of the assessed doses due to variance in sample quality can be decreased or if it is not possible its bias can be predicted. The proposed protocol leads to more reliable estimation of dose. The SQPs are designed in a way that they have the potential to be adapted to similar systems

    A generic curriculum development model for the biomedical physics component of the educational and training programmes of the non-physics healthcare professions

    No full text
    The objective of the study was the construction of a generic curriculum development model for the use of biomedical physics (BMP) educators teaching the non-physics healthcare professions (HCP) in Europe. A comprehensive, qualitative cross-sectional Europe-wide survey of the curricula delivered by BMP in Faculties of Medicine and Health Sciences (FMHS) was carried out. Curricular content was collected from faculty web-sites, curricular documents and textbooks. The survey data was supplemented with semi-structured interviews and direct observation during onsite visits. The number of faculties studied was 118 from 67 universities spread all over Europe, whilst the number of onsite visits/interviews was 15 (geographically distributed as follows: Eastern Europe 6, North Western Europe 5, and South Western Europe 4). EU legislation, recommendations by European national medical councils, educational benchmark statements by higher education quality assurance agencies, research journals concerning HCP education and other documents relevant to standards in clinical practice and undergraduate education were also analyzed. Best practices and BMP learning outcomes were elicited from the curricular materials, interviews and documentation and these were subsequently used to construct the curriculum development model. A structured, comprehensive BMP learning outcomes inventory was designed in the format required by the European Qualifications Framework (EQF). The structures of the inventory and curriculum development model make them ideally suited for use by BMP involved in European curriculum development initiatives for the HCP
    corecore