27 research outputs found

    The <i>in vivo</i> effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses

    Get PDF
    AIMS: The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration. MATERIALS AND METHODS: The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively. RESULTS: The porous titanium alloy flange reduced epithelial downgrowth and increased soft-tissue integration compared with the current drilled flange. The addition of coatings did not enhance these effects. CONCLUSION: These results indicate that a fully porous titanium alloy flange has the potential to increase the soft-tissue seal around ITAP and reduce susceptibility to infection compared with the current design

    Determining the porous structure for optimal soft-tissue ingrowth: An in vivo histological study

    Get PDF
    The success of osseointegrated transcutaneous prostheses depends on a soft-tissue seal forming at the skin-implant interface in order to prevent infection. Current designs include a flange with drilled holes or a subdermal barrier with a porous coating in an attempt to promote soft-tissue attachment. However, the soft-tissue seal is not reliably achieved despite these designs and infection remains a significant problem. This study investigated soft-tissue integration into fully porous titanium alloy structures with interconnected pores. The study aimed to determine the effect of altering pore and strut size combinations on soft-tissue ingrowth into porous titanium alloy structures in vivo. It was hypothesized that implants with a more open porous structure with larger pore sizes would increase soft-tissue ingrowth more than less open porous structures. Porous titanium alloy cylinders were inserted into sheep paparaspinal muscles (n = 6) and left in situ for four weeks. A histological assessment of soft-tissue ingrowth was performed. Percentage soft-tissue pore fill, cell nuclei density and blood vessel density were quantified. The results showed that larger pore sizes were supportive of soft-tissue ingrowth. A structure with a pore size of 700μm and a strut size of 300μm supported revascularisation to the greatest degree. A flange with this structure may be used in future studies of osseointegrated transcutaneous prostheses in order to enhance the soft-tissue seal

    Mesenchymal Stromal Cells and Platelet-Rich Plasma Promote Tendon Allograft Healing in Ovine Anterior Cruciate Ligament Reconstruction

    Get PDF
    Purpose The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI). Methods Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal–noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon–bone healing, respectively. Spearman’s rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed. Results The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = − 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ. Conclusions BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI

    Intraosseous transcutaneous amputation prostheses vs dental implants: A comparison between keratinocytes and gingival cell adhesion in vitro.

    Get PDF
    Keratinocytes versus gingival cell adhesion European Cells and Materials Vol. 29 2015 (pages 237-249) ISSN 1473-2262 Abstract Infection is the primary failure modality for transcutaneous implants because the skin breach provides a route for pathogens to enter the body. Intraosseous transcutaneous amputation prostheses (ITAP) are being developed to overcome this problem by creating a seal at the skin-implant interface. Oral gingival epithelial cell attachment creates an infection-free seal around dental implants. However, this has yet to be achieved consistently outside of the oral environment. Epithelial cells attach to metal substrates by means of hemidesmosomes and focal adhesions. Their density per unit cell is an indicator of attachment strength. We postulate that gingival epithelial cells express more hemidesmosomes and focal adhesions at earlier time points, compared with epidermal keratinocytes, and this increased speed and strength of attachment may be the reason why an infection-free seal is often achieved around dental implants but less frequently around ITAP. The aim of this study was to compare epidermal keratinocyte with oral gingival cell attachment on titanium alloy in vitro, to determine whether these two cell types differ in their speed and strength of attachment. We aimed to test the hypothesis that gingival cells up-regulate focal adhesion and hemidesmosome formation at earlier time points compared with extra-oral keratinocytes. To test this hypothesis we cultured epidermal keratinocytes and oral gingival cells on titanium alloy substrates and assessed cell attachment by focal adhesions and hemidesmosome expression at 4, 24, 48 and 72 hours. Formation and expression of hemidesmosomes temporally lagged behind that of focal adhesions in both cell types. Gingival derived cells up-regulated focal adhesion and hemidesmosome expression at earlier time points compared with epidermal keratinocytes. Hemidesmosome expression in oral gingival cells was 3 times greater compared with epidermal keratinocytes at 4 hours. Our findings indicate that earlier attachment may be key to the success of the dental implant transcutaneous interface

    Myoelectric Signal Transmission from Implanted Epimysial Electrodes Using a Bone-Anchor as a Conduit

    Get PDF
    Introduction Current Upper-limb myoelectric prostheses rely on only 2 control signals from surface electrodes, placed over antagonistic muscles in the amputation stump, for limb control. While this has benefits over the traditional body-powered control, there are disadvantages; electrode lift-off, impedance variation, cross-talk, reliability, and limitations in intuitive control. To address these problems, electrodes can be implanted directly on individual muscles responsible for specific actions. Not only does this address skin-related issues, it reduces cross-talk and greatly increases the number of control channels for multi degrees of freedom intuitive control. Bone-anchored devices can be used to overcome problems with prosthetic attachment and additionally used to transfer control signals from these implantable electrodes to the prosthesis. [1] In above-elbow amputees, targeted muscle reinnervation (TMR) enables more signal generation by redirecting nerves previously controlling the amputated muscles in the forearm, to surrogate muscles in the torso (e.g. pectoralis major). [2] We describe in vivo model using implantable electrodes to record myoelectric signals (MES) in normal muscles and following TMR, utilizing a bone-anchor as a conduit to carry signals across the skin barrier. Materials and Methods An in vivo n=6 ovine model was used. A bone-anchor was placed trans-tibially and bipolar electrodes sutured to M. Peroneus Tertius (PT). In a further n=1, motor nerve to PT was divided and coapted with a motor branch from peroneal nerve. MES were recorded over a 12-week period. Functional recovery in the TMR model was assessed by MES and force-plate analysis (FPA). Results In the n=6 group, there was a positive correlation between signal to noise ratio (SNR) and time since implantation (p < 0.005), with a mean SNR of 7 by week 12. In the TMR model, functional recovery was observed after 6 weeks. Difference between legs returned to normal (pre-op: left 4.7 N/kg, right 4.8 N/kg; 80 days post-op: left 4.1 N/kg, right 4.3 N/kg). Recorded MES from TMR muscle compared favourably with healthy muscle. Conclusions We have demonstrated that a bone-anchor is a reliable and robust conduit for transmitting MES over a period of 12 weeks. The combination of implanted electrodes & direct skeletal fixation offers clear advantages over current systems for prosthetic attachment & control. This system forms the basis of a complete solution for prosthetic rehabilitation, which can also be used in the context of TMR. References 1. Al Ajam et. al., 2013. PMID: 23358938 2. Kuiken et. al., 2004. PMID: 1565863

    The use of a bone-anchored device as a hard-wired conduit for transmitting EMG signals from implanted muscle electrodes.

    Get PDF
    The use of a bone-anchored device to transmit electrical signals from internalized muscle electrodes was studied in a sheep model. The bone-anchored device was used as a conduit for the passage of a wire connecting an internal epimysial electrode to an external signal-recording device. The bone-anchored device was inserted into an intact tibia and the electrode attached to the adjacent M. peroneus tertius. "Physiological" signals with low signal-to-noise ratios were successfully obtained over a 12-week period by walking the sheep on a treadmill. Reliable transmission of multiple muscle signals across the skin barrier is essential for providing intuitive, biomimetic upper limb prostheses. This technology has the potential to provide a better functional and reliable solution for upper limb amputee rehabilitation: attachment and control

    The mechanical strength of additive manufactured intraosseous transcutaneous amputation prosthesis, known as the ITAP

    Get PDF
    The focus of this research is the ability to manufacture, when using layer base production methods, the medical insert known as ITAP used for prosthetic attachment in a femur. It has been demonstrated using computational modelling that a 3-dimensional build of the ITAP has the lowest stress present when the honeycomb infill pattern’s percentage is set at 100%, with the ITAP being constructed on a horizontal printing bed with the shear forces acting adjacent to the honeycomb structure. The testing has followed the British standard ISO 527-2:2012, which shows a layer base printed tensile test sample, with a print setting of 100% infill and at a side print orientation; this was found to withstand a greater load before failure than any other printed test configuration. These findings have been validated through simulations that analyses the compression, shear and torque forces acting upon an augmented femur, with an imbedded ITAP model
    corecore