3,137 research outputs found
Imperfect Imitation Can Enhance Cooperation
The promotion of cooperation on spatial lattices is an important issue in
evolutionary game theory. This effect clearly depends on the update rule: it
diminishes with stochastic imitative rules whereas it increases with
unconditional imitation. To study the transition between both regimes, we
propose a new evolutionary rule, which stochastically combines unconditional
imitation with another imitative rule. We find that, surprinsingly, in many
social dilemmas this rule yields higher cooperative levels than any of the two
original ones. This nontrivial effect occurs because the basic rules induce a
separation of timescales in the microscopic processes at cluster interfaces.
The result is robust in the space of 2x2 symmetric games, on regular lattices
and on scale-free networks.Comment: 4 pages, 4 figure
FLEXIBILITY-BASED LINEAR DYNAMIC ANALYSIS OF COMPLEX STRUCTURES WITH CURVED-3D MEMBERS
A fexibility-based formulation of a new mass matrix for the dynamic analysis of spatial frames consisting of curved elements with variable cross-sections is presented. The main characteristic of such formulations is the exact equilibrium of forces at any interior point, with no additional hypotheses about the distribution of displacements, strains or stresses. Accordingly, the derived element mass matrix takes into account the exact sti ness and mass distribution throughout each element. In validation tests, results obtained with this method are compared with those obtained by other numerical or analytical formulations, showing the accuracy of the proposed method. The comparison of experimental results for a multispan arch bridge subjected to a dynamic load with those achieved by means of the proposed method are nally included to illustrate its eciency in the treatment of complex structures
Effect of Geometrical Imperfections on the Response of Dry-Joint Masonry Arches to Support Settlements
This paper aims to investigate the effects of geometrical imperfections on the response of a scaled dry-joint arch to the vertical displacement of one support. The arch behaviour was analysed in the large displacement regime using both physical and numerical modelling. The experimental tests were performed on 1:10 small-scale models made of bicomponent composite blocks with dry joints. In order to evaluate the geometrical accuracy of the blocks, two different sets of voussoirs were produced. The numerical simulations were carried out using a finite element (FE) micro-modelling approach, where the arch was modelled as an assembly of very stiff voussoirs connected by nonlinear interfaces. Particular attention was paid to the interface stiffness, which was set so as to tune the numerical model with the experimental evidence. Experimental and numerical results were then compared in terms of collapse mechanism, hinge configuration and ultimate displacement capacity. The imperfections of the physical models were found to significantly affect the arch response
Relaxation and derelaxation of pure and hydrogenated amorphous silicon during thermal annealing experiments
The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated
amorphous silicon (a-Si:H) materials, that occurs during thermal annealing
experiments, has been analysed by Raman spectroscopy and differential scanning
calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by
relaxation of the Si-Si network strain, but it reveals a derelaxation of the
bond angle strain. Since the state of relaxation after annealing is very
similar for pure and hydrogenated materials, our results give strong
experimental support to the predicted configurational gap between a-Si and
crystalline silicon.Comment: 15 pages, 3 figures, 1 table to be published in Applied Physics
Letter
Second-order equation of state with the full Skyrme interaction: toward new effective interactions for beyond mean-field models
In a quantum Fermi system the energy per particle calculated at the second
order beyond the mean-field approximation diverges if a zero-range interaction
is employed. We have previously analyzed this problem in symmetric nuclear
matter by using a simplified nuclear Skyrme interaction, and proposed a
strategy to treat such a divergence. In the present work, we extend the same
strategy to the case of the full nuclear Skyrme interaction. Moreover we show
that, in spite of the strong divergence ( , where is
the momentum cutoff) related to the velocity-dependent terms of the
interaction, the adopted cutoff regularization can be always simultaneously
performed for both symmetric and nuclear matter with different
neutron-to-proton ratio. This paves the way to applications to finite nuclei.Comment: 15 figure
Development and validation of the Spanish hazard perception test
Objective: The aim of the current study is to develop and obtain validity evidence for a Hazard Perception test suitable for the Spanish driving population. To obtain validity evidence to support the use of the test, the effect of hazardous and quasi-hazardous situations on the participants’ Hazard Prediction is analysed and the pattern of results of drivers of different driving experience: learner, novice and expert drivers and re-offender vs. non-offender drivers, is compared. Potentially hazardous situations are those that develop without involving any real hazard (i.e., the driver didn’t actually have to decelerate or make any evasive manoeuvre to avoid a potential collision). The current study analysed multiple offender drivers attending compulsory re-education programmes as a result of reaching the maximum number of penalty points on their driving licence, due to repeated violations of traffic laws. Method: A new video-based hazard perception test was developed, using a total of 20 hazardous situation videos plus 8 quasi-hazardous situation videos. They were selected from 167 recordings of natural hazards in real Spanish driving settings
Evolution of Coordination in Social Networks: A Numerical Study
Coordination games are important to explain efficient and desirable social
behavior. Here we study these games by extensive numerical simulation on
networked social structures using an evolutionary approach. We show that local
network effects may promote selection of efficient equilibria in both pure and
general coordination games and may explain social polarization. These results
are put into perspective with respect to known theoretical results. The main
insight we obtain is that clustering, and especially community structure in
social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP
Slow-Moving Landslide Damage Assessment of Historic Masonry Churches: Some Case-Studies in Italy
This paper presents a contribution for the damage assessment of historic masonry churches exposed to slow-moving landslides. In particular, the authors identified four global damage mechanisms, which are presented here by means of the critical damage assessment of four case studies located in the Liguria region (Italy) in areas affected by slow-moving landslides. For each church, a correlation between the damage patterns observed on-site and the ground movements induced by landslide phenomena was sought by means of visual inspections and crack interpretation. As a result, each damage mechanism was associated to a different pattern of ground movements produced by slow-moving landslides
Maternal colonization with Staphylococcus aureus and Group B streptococcus is associated with colonization in newborns.
OBJECTIVES: Although Staphylococcus aureus and Group B streptococcus (GBS) are major causes of neonatal sepsis in sub-Saharan Africa, it is unclear how these bacteria are transmitted to the neonate. METHODS: In a cohort of 377 Gambian women and their newborns, nasopharyngeal swabs were collected at delivery (day 0), and 3, 6, 14 and 28 days later. Breast milk samples and vaginal swabs were collected from the mother. Staphylococcus aureus and GBS were isolated using conventional microbiological methods. RESULTS: Most women were carriers of S. aureus (264 out of 361 with all samples collected, 73.1%) at some point during follow up and many were carriers of GBS (114 out of 361, 31.6%). Carriage of S. aureus was common in all three maternal sites and GBS was common in the vaginal tract and breast milk. Among newborns, carriage of S. aureus peaked at day 6 (238 out of 377, 63.1%) and GBS at day 3 (39 out of 377, 10.3%). Neonatal carriage of S. aureus at day 6 was associated with maternal carriage in the breast milk adjusted OR 2.54; 95% CI 1.45-4.45, vaginal tract (aOR 2.55; 95% CI 1.32-4.92) and nasopharynx (aOR 2.49; 95% CI 1.56-3.97). Neonatal carriage of GBS at day 6 was associated with maternal carriage in the breast milk (aOR 3.75; 95% CI 1.32-10.65) and vaginal tract (aOR 3.42; 95% CI 1.27-9.22). CONCLUSIONS: Maternal colonization with S. aureus or GBS is a risk factor for bacterial colonization in newborns
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
- …