537 research outputs found
Slater-Pauling Rule and Curie-Temperature of Co-based Heusler compounds
A concept is presented serving to guide in the search for new materials with
high spin polarization. It is shown that the magnetic moment of half-metallic
ferromagnets can be calculated from the generalized Slater-Pauling rule.
Further, it was found empirically that the Curie temperature of Co based
Heusler compounds can be estimated from a seemingly linear dependence on the
magnetic moment. As a successful application of these simple rules, it was
found that CoFeSi is, actually, the half-metallic ferromagnet exhibiting
the highest magnetic moment and the highest Curie temperature measured for a
Heusler compound
Correlation in the transition metal based Heusler compounds CoMnSi and CoFeSi
Half-metallic ferromagnets like the full Heusler compounds with formula
XYZ are supposed to show an integer value of the spin magnetic moment.
Calculations reveal in certain cases of X = Co based compounds non-integer
values, in contrast to experiments. In order to explain deviations of the
magnetic moment calculated for such compounds, the dependency of the electronic
structure on the lattice parameter was studied theoretically. In local density
approximation (LDA), the minimum total energy of CoFeSi is found for the
experimental lattice parameter, but the calculated magnetic moment is about 12%
too low. Half-metallic ferromagnetism and a magnetic moment equal to the
experimental value of are found, however, only after increasing the
lattice parameter by more than 6%.
To overcome this discrepancy, the LDA scheme was used to respect on-site
electron correlation in the calculations. Those calculations revealed for
CoFeSi that an effective Coulomb-exchange interaction in the
range of about 2eV to 5eV leads to half-metallic ferromagnetism and the
measured, integer magnetic moment at the measured lattice parameter. Finally,
it is shown in the case of CoMnSi that correlation may also serve to
destroy the half-metallic behavior if it becomes too strong (for CoMnSi
above 2eV and for CoFeSi above 5eV). These findings indicate that on-site
correlation may play an important role in the description of Heusler compounds
with localized moments.Comment: submitted to Phys. Rev.
Covalent bonding and the nature of band gaps in some half-Heusler compounds
Half-Heusler compounds \textit{XYZ}, also called semi-Heusler compounds,
crystallize in the MgAgAs structure, in the space group . We report a
systematic examination of band gaps and the nature (covalent or ionic) of
bonding in semiconducting 8- and 18- electron half-Heusler compounds through
first-principles density functional calculations. We find the most appropriate
description of these compounds from the viewpoint of electronic structures is
one of a \textit{YZ} zinc blende lattice stuffed by the \textit{X} ion. Simple
valence rules are obeyed for bonding in the 8-electron compound. For example,
LiMgN can be written Li + (MgN), and (MgN), which is isoelectronic
with (SiSi), forms a zinc blende lattice. The 18-electron compounds can
similarly be considered as obeying valence rules. A semiconductor such as
TiCoSb can be written Ti + (CoSb); the latter unit is
isoelectronic and isostructural with zinc-blende GaSb. For both the 8- and
18-electron compounds, when \textit{X} is fixed as some electropositive cation,
the computed band gap varies approximately as the difference in Pauling
electronegativities of \textit{Y} and \textit{Z}. What is particularly exciting
is that this simple idea of a covalently bonded \textit{YZ} lattice can also be
extended to the very important \textit{magnetic} half-Heusler phases; we
describe these as valence compounds \textit{ie.} possessing a band gap at the
Fermi energy albeit only in one spin direction. The \textit{local} moment in
these magnetic compounds resides on the \textit{X} site.Comment: 18 pages and 14 figures (many in color
Revision of model parameters for kappa-type charge transfer salts: an ab initio study
Intense experimental and theoretical studies have demonstrated that the
anisotropic triangular lattice as realized in the kappa-(BEDT-TTF)2X family of
organic charge transfer (CT) salts yields a complex phase diagram with
magnetic, superconducting, Mott insulating and even spin liquid phases. With
extensive density functional theory (DFT) calculations we refresh the link
between manybody theory and experiment by determining hopping parameters of the
underlying Hubbard model. This leads us to revise the widely used semiempirical
parameters in the direction of less frustrated, more anisotropic triangular
lattices. The implications of these results on the systems' description are
discussed.Comment: Accepted for pupblication in Phys. Rev. Let
Geometric, electronic, and magnetic structure of CoFeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new
materials with high spin polarization. It is based on two semi-empirical
models. Firstly, the Slater-Pauling rule was used for estimation of the
magnetic moment. This model is well supported by electronic structure
calculations. The second model was found particularly for Co based Heusler
compounds when comparing their magnetic properties. It turned out that these
compounds exhibit seemingly a linear dependence of the Curie temperature as
function of the magnetic moment. Stimulated by these models, CoFeSi was
revisited. The compound was investigated in detail concerning its geometrical
and magnetic structure by means of X-ray diffraction, X-ray absorption and
M\"o\ss bauer spectroscopies as well as high and low temperature magnetometry.
The measurements revealed that it is, currently, the material with the highest
magnetic moment () and Curie-temperature (1100K) in the classes of
Heusler compounds as well as half-metallic ferromagnets. The experimental
findings are supported by detailed electronic structure calculations
Design of magnetic materials: CoCrFeAl
Doped Heusler compounds CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure of the ordered, doped Heusler compound CoCrFeAl
( was calculated using different types of band structure
calculations. The ordered compounds turned out to be ferromagnetic with small
Al magnetic moment being aligned anti-parallel to the 3d transition metal
moments. All compounds show a gap around the Fermi-energy in the minority
bands. The pure compounds exhibit an indirect minority gap, whereas the
ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism
(MCD) in X-ray absorption spectra was measured at the edges of Co,
Fe, and Cr of the pure compounds and the alloy in order to determine
element specific magnetic moments. Calculations and measurements show an
increase of the magnetic moments with increasing iron content. The
experimentally observed reduction of the magnetic moment of Cr can be explained
by Co-Cr site-disorder. The presence of the gap in the minority bands of
CoCrAl can be attributed to the occurrence of pure Co and mixed CrAl
(001)-planes in the structure. It is retained in structures with
different order of the CrAl planes but vanishes in the -structure with
alternating CoCr and CoAl planes.Comment: corrected author lis
Electronic structure, magnetism, and disorder in the Heusler compound CoTiSn
Polycrystalline samples of the half-metallic ferromagnet Heusler compound
CoTiSn have been prepared and studied using bulk techniques (X-ray
diffraction and magnetization) as well as local probes (Sn M\"ossbauer
spectroscopy and Co nuclear magnetic resonance spectroscopy) in order to
determine how disorder affects half-metallic behavior and also, to establish
the joint use of M\"ossbauer and NMR spectroscopies as a quantitative probe of
local ion ordering in these compounds. Additionally, density functional
electronic structure calculations on ordered and partially disordered
CoTiSn compounds have been carried out at a number of different levels of
theory in order to simultaneously understand how the particular choice of DFT
scheme as well as disorder affect the computed magnetization. Our studies
suggest that a sample which seems well-ordered by X-ray diffraction and
magnetization measurements can possess up to 10% of antisite (Co/Ti)
disordering. Computations similarly suggest that even 12.5% antisite Co/Ti
disorder does not destroy the half-metallic character of this material.
However, the use of an appropriate level of non-local DFT is crucial.Comment: 11 pages and 5 figure
Comparison of Two Azithromycin Distribution Strategies for Controlling Trachoma in Nepal
OBJECTIVE:
The study compares the effectiveness of two strategies for distributing azithromycin in an area with mild-to-moderate active trachoma in Nepal. METHODS:
The two strategies investigated were the use of azithromycin for 1) mass treatment of all children, or 2) targeted treatment of only those children who were found to be clinically active, as well as all members of their household. FINDINGS:
Mass treatment of children was slightly more effective in terms of decreasing the prevalence of clinically active trachoma (estimated by clinical examination) and of chlamydial infection (estimated by DNA amplification tests), although neither result was statistically significant. CONCLUSION:
Both strategies appeared to be effective in reducing the prevalence of clinically active trachoma and infection six months after the treatment. Antibiotic treatment reduced the prevalence of chlamydial infection more than it did the level of clinically active trachoma
Trachoma Decline and Widespread Use of Antimicrobial Drugs
Widespread use of antimicrobial drugs may be contributing to trachoma decline
- …