2,092 research outputs found
Noise predictions and economic effects of Boeing nacelle modifications
Noise level predictions and economics of Boeing nacelle modification
Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems
This paper describes a comprehensive prototype of large-scale fault adaptive
embedded software developed for the proposed Fermilab BTeV high energy physics
experiment. Lightweight self-optimizing agents embedded within Level 1 of the
prototype are responsible for proactive and reactive monitoring and mitigation
based on specified layers of competence. The agents are self-protecting,
detecting cascading failures using a distributed approach. Adaptive,
reconfigurable, and mobile objects for reliablility are designed to be
self-configuring to adapt automatically to dynamically changing environments.
These objects provide a self-healing layer with the ability to discover,
diagnose, and react to discontinuities in real-time processing. A generic
modeling environment was developed to facilitate design and implementation of
hardware resource specifications, application data flow, and failure mitigation
strategies. Level 1 of the planned BTeV trigger system alone will consist of
2500 DSPs, so the number of components and intractable fault scenarios involved
make it impossible to design an `expert system' that applies traditional
centralized mitigative strategies based on rules capturing every possible
system state. Instead, a distributed reactive approach is implemented using the
tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS), Washington, DC, April, 200
Interacting Dark Matter and Dark Energy
We discuss models for the cosmological dark sector in which the energy
density of a scalar field approximates Einstein's cosmological constant and the
scalar field value determines the dark matter particle mass by a Yukawa
coupling. A model with one dark matter family can be adjusted so the
observational constraints on the cosmological parameters are close to but
different from what is predicted by the Lambda CDM model. This may be a useful
aid to judging how tightly the cosmological parameters are constrained by the
new generation of cosmological tests that depend on the theory of structure
formation. In a model with two families of dark matter particles the scalar
field may be locked to near zero mass for one family. This can suppress the
long-range scalar force in the dark sector and eliminate evolution of the
effective cosmological constant and the mass of the nonrelativistic dark matter
particles, making the model close to Lambda CDM, until the particle number
density becomes low enough to allow the scalar field to evolve. This is a
useful example of the possibility for complexity in the dark sector.Comment: 15 pages, 6 figures; added a reference and a minor correctio
Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking
We study theoretically the optics in undoped direct gap semiconductors which
are strongly driven in the THz regime. We calculate the optical sideband
generation due to nonlinear mixing of the THz field and the near infrared
probe. Starting with an inversion symmetric microscopic Hamiltonian we include
the THz field nonperturbatively using non-equilibrium Green function
techniques. We find that a self induced relativistic spin-THz field coupling
locally breaks the inversion symmetry, resulting in the formation of odd
sidebands which otherwise are absent.Comment: 8 pages, 6 figure
Magnetic Order Beyond RKKY in the Classical Kondo Lattice
We study the Kondo lattice model of band electrons coupled to classical
spins, in three dimensions, using a combination of variational calculation and
Monte Carlo. We use the weak coupling `RKKY' window and the strong coupling
regime as benchmarks, but focus on the physically relevant intermediate
coupling regime. Even for modest electron-spin coupling the phase boundaries
move away from the RKKY results, the non interacting Fermi surface no longer
dictates magnetic order, and weak coupling `spiral' phases give way to
collinear order. We use these results to revisit the classic problem of 4f
magnetism and demonstrate how both electronic structure and coupling effects
beyond RKKY control the magnetism in these materials.Comment: 6 pages, 4 figs. Improved figures, expanded captions. To appear in
Europhys. Let
Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs
The ambipolar diffusion length and carrier lifetime are measured in AlxGa1−xAs for several mole fractions in the interval 0<x<0.38. These parameters are found to have significantly higher values in the higher mole fraction samples. These increases are attributed to occupation of states in the indirect valleys, and supporting calculations are presented
Graviton confinement inside hypermonopoles of any dimension
We show the generic existence of metastable massive gravitons in the
four-dimensional core of self-gravitating hypermonopoles in any number of
infinite-volume extra-dimensions. Confinement is observed for Higgs and gauge
bosons couplings of the order unity. Provided these resonances are light
enough, they realise the Dvali-Gabadadze-Porrati mechanism by inducing a
four-dimensional gravity law on some intermediate length scales. The effective
four-dimensional Planck mass is shown to be proportional to a negative power of
the graviton mass. As a result, requiring gravity to be four-dimensional on
cosmological length scales may solve the mass hierarchy problem.Comment: 23 pages, 6 figures, uses iopart. Misprints corrected, references
added, matches published versio
Toll-like receptors and their soluble forms differ in the knee and thumb basal osteoarthritic joints
Background and purpose - Although the pathogenesis of osteoarthritis (OA) is not well understood, chondrocyte-mediated inflammatory responses (triggered by the activation of innate immune receptors by damage-associated molecules) are thought to be involved. We examined the relationship between Toll-like receptors (TLRs) and OA in cartilage from 2 joints differing in size and mechanical loading: the first carpometacarpal (CMC-I) and the knee. Patients and methods - Samples of human cartilage obtained from OA CMC-I and knee joints were immunostained for TLRs (1-9) and analyzed using histomorphometry and principal component analysis (PCA). mRNA expression levels were analyzed with RT-PCR. Collected synovial fluid (SF) samples were screened for the presence of soluble forms of TLR2 and TLR4 by enzyme-linked immunosorbent assay (ELISA). Results - In contrast to knee OA, TLR expression in CMC-I OA did not show grade-dependent overall profile changes, but PCA revealed that TLR expression profiles clustered according to their cellular compartment organization. Protein levels of TLR4 were substantially higher in knee OA than in CMC-I OA, while the opposite was the case at the mRNA level. ELISA assays confirmed the presence of soluble forms of TLR2 and TLR4 in SF, with sTLR4 being considerably higher in CMC-I OA than in knee OA. Interpretation - We observed that TLRs are differentially expressed in OA cartilage, depending on the joint. Soluble forms of TLR2 and TLR4 were detected for the first time in SF of osteoarthritic joints, with soluble TLR4 being differentially expressed. Together, our results suggest that negative regulatory mechanisms of innate immunity may be involved in the pathomolecular mechanisms of osteoarthritis.Peer reviewe
- …