52 research outputs found

    Streptomyces polyketides mediate bacteria–fungi interactions across soil environments

    Get PDF
    Although the interaction between prokaryotic and eukaryotic microorganisms is crucial for the functioning of ecosystems, information about the processes driving microbial interactions within communities remains scarce. Here we show that arginine-derived polyketides (arginoketides) produced by Streptomyces species mediate cross-kingdom microbial interactions with fungi of the genera Aspergillus and Penicillium, and trigger the production of natural products. Arginoketides can be cyclic or linear, and a prominent example is azalomycin F produced by Streptomyces iranensis, which induces the cryptic orsellinic acid gene cluster in Aspergillus nidulans. Bacteria that synthesize arginoketides and fungi that decode and respond to this signal were co-isolated from the same soil sample. Genome analyses and a literature search indicate that arginoketide producers are found worldwide. Because, in addition to their direct impact, arginoketides induce a secondary wave of fungal natural products, they probably contribute to the wider structure and functioning of entire soil microbial communities

    Identification of a Novel β-Cell Glucokinase (GCK) Promoter Mutation (−71G>C) That Modulates GCK Gene Expression Through Loss of Allele-Specific Sp1 Binding Causing Mild Fasting Hyperglycemia in Humans

    Get PDF
    OBJECTIVE: Inactivating mutations in glucokinase (GCK) cause mild fasting hyperglycemia. Identification of a GCK mutation has implications for treatment and prognosis; therefore, it is important to identify these individuals. A significant number of patients have a phenotype suggesting a defect in glucokinase but no abnormality of GCK. We hypothesized that the GCK beta-cell promoter region, which currently is not routinely screened, could contain pathogenic mutations; therefore, we sequenced this region in 60 such probands. RESEARCH DESIGN AND METHODS: The beta-cell GCK promoter was sequenced in patient DNA. The effect of the identified novel mutation on GCK promoter activity was assessed using a luciferase reporter gene expression system. Electrophoretic mobility shift assays (EMSAs) were used to determine the impact of the mutation on Sp1 binding. RESULTS: A novel -71G>C mutation was identified in a nonconserved region of the human promoter sequence in six apparently unrelated probands. Family testing established cosegregation with fasting hyperglycemia (> or = 5.5 mmol/l) in 39 affected individuals. Haplotype analysis in the U.K. family and four of the Slovakian families demonstrated that the mutation had arisen independently. The mutation maps to a potential transcriptional activator binding site for Sp1. Reporter assays demonstrated that the mutation reduces promoter activity by up to fourfold. EMSAs demonstrated a dramatic reduction in Sp1 binding to the promoter sequence corresponding to the mutant allele. CONCLUSIONS: A novel beta-cell GCK promoter mutation was identified that significantly reduces gene expression in vitro through loss of regulation by Sp1. To ensure correct diagnosis of potential GCK-MODY (maturity-onset diabetes of the young) cases, analysis of the beta-cell GCK promoter should be included

    Achlya mitochondrial DNA: gene localization and analysis of inverted repeats

    Full text link
    Mitochondrial DNA from four strains of the oomycete Achlya has been compared and nine gene loci mapped, including that of the ribosomal protein gene, var1 . Examination of the restriction enzyme site maps showed the presence of four insertions relative to a map common to all four strains. All the insertions were found in close proximity to genic regions. The four strains also cotained the inverted repeat first observed in A. ambisexualis (Hudspeth et al. 1983), allowing an examination by analysis of retained restriction sites of the evolutionary stability of repeated DNA sequences relative to single copy sequences. Although the inverted repeat is significantly more stable than single copy sequences, more detailed analysis indicated that this stability is limited to the portion encoding the ribosomal RNA genes. Thus, the apparent evolutionary stability of the repeat does not appear to derive from the inverted repeat structure per se.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47563/1/438_2004_Article_BF00330510.pd

    Characterization of fracture processes by continuum and discrete modelling

    Full text link
    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples

    Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites

    Full text link
    The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model we aim at understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. By genome-wide ChIP-seq analysis of acetylated histone H3 we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, amino acid and nitrogen metabolism, signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species
    corecore