37,274 research outputs found
Reflexive functors of modules in Commutative Algebra
Reflexive functors of modules naturally appear in Algebraic Geometry, mainly
in the theory of linear representations of group schemes, and in "duality
theories". In this paper we study and determine reflexive functors and we give
many properties of reflexive functors
On The Reduced Canonical Quantization Of The Induced 2D-Gravity
The quantization of the induced 2d-gravity on a compact spatial section is
carried out in three different ways. In the three approaches the supermomentum
constraint is solved at the classical level but they differ in the way the
hamiltonian constraint is imposed. We compare these approaches establishing an
isomorphism between the resulting Hilbert spaces.Comment: 17 pages, plain LaTeX. FTUV/93-15, IFIC/93-10, Imperial-TP/93-94/1
The origin of galaxy scaling laws in LCDM
It has long been recognized that tight relations link the mass, size, and
characteristic velocity of galaxies. These scaling laws reflect the way in
which baryons populate, cool, and settle at the center of their host dark
matter halos; the angular momentum they retain in the assembly process; as well
as the radial distribution and mass scalings of the dark matter halos. There
has been steady progress in our understanding of these processes in recent
years, mainly as sophisticated N-body and hydrodynamical simulation techniques
have enabled the numerical realization of galaxy models of ever increasing
complexity, realism, and appeal. These simulations have now clarified the
origin of these galaxy scaling laws in a universe dominated by cold dark
matter: these relations arise from the tight (but highly non-linear) relations
between (i) galaxy mass and halo mass, (ii) galaxy size and halo characteristic
radius; and (iii) from the self-similar mass nature of cold dark matter halo
mass profiles. The excellent agreement between simulated and observed galaxy
scaling laws is a resounding success for the LCDM cosmogony on the highly
non-linear scales of individual galaxies.Comment: Contribution to the Proceedings of the Simons Conference
"Illuminating Dark Matter", held in Kruen, Germany, in May 2018, eds. R.
Essig, K. Zurek, J. Fen
More examples of structure formation in the Lemaitre-Tolman model
In continuing our earlier research, we find the formulae needed to determine
the arbitrary functions in the Lemaitre-Tolman model when the evolution
proceeds from a given initial velocity distribution to a final state that is
determined either by a density distribution or by a velocity distribution. In
each case the initial and final distributions uniquely determine the L-T model
that evolves between them, and the sign of the energy-function is determined by
a simple inequality. We also show how the final density profile can be more
accurately fitted to observational data than was done in our previous paper. We
work out new numerical examples of the evolution: the creation of a galaxy
cluster out of different velocity distributions, reflecting the current data on
temperature anisotropies of CMB, the creation of the same out of different
density distributions, and the creation of a void. The void in its present
state is surrounded by a nonsingular wall of high density.Comment: LaTeX 2e with eps figures. 30 pages, 11 figures, 30 figure files.
Revision matches published versio
Dark-Halo Cusp: Asymptotic Convergence
We propose a model for how the buildup of dark halos by merging satellites
produces a characteristic inner cusp, of a density profile \rho \prop r^-a with
a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical
clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of
a<1 exerts tidal compression which prevents local deposit of satellite
material; the satellite sinks intact into the halo center thus causing a rapid
steepening to a>1. Using merger N-body simulations, we learn that this cusp is
stable under a sequence of mergers, and derive a practical tidal mass-transfer
recipe in regions where the local slope of the halo profile is a>1. According
to this recipe, the ratio of mean densities of halo and initial satellite
within the tidal radius equals a given function psi(a), which is significantly
smaller than unity (compared to being 1 according to crude resonance criteria)
and is a decreasing function of a. This decrease makes the tidal mass transfer
relatively more efficient at larger a, which means steepening when a is small
and flattening when a is large, thus causing converges to a stable solution.
Given this mass-transfer recipe, linear perturbation analysis, supported by toy
simulations, shows that a sequence of cosmological mergers with homologous
satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1.
The slope depends only weakly on the fluctuation power spectrum, in agreement
with cosmological simulations. During a long interim period the profile has an
NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough
compact satellite remnants make it intact into the inner halo. In order to
maintain a flat core, satellites must be disrupted outside the core, possibly
as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres
- …